photoprism-client-go/vendor/github.com/golang/geo/s2/polygon.go

1214 lines
38 KiB
Go
Raw Normal View History

// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"fmt"
"io"
"math"
)
// Polygon represents a sequence of zero or more loops; recall that the
// interior of a loop is defined to be its left-hand side (see Loop).
//
// When the polygon is initialized, the given loops are automatically converted
// into a canonical form consisting of "shells" and "holes". Shells and holes
// are both oriented CCW, and are nested hierarchically. The loops are
// reordered to correspond to a pre-order traversal of the nesting hierarchy.
//
// Polygons may represent any region of the sphere with a polygonal boundary,
// including the entire sphere (known as the "full" polygon). The full polygon
// consists of a single full loop (see Loop), whereas the empty polygon has no
// loops at all.
//
// Use FullPolygon() to construct a full polygon. The zero value of Polygon is
// treated as the empty polygon.
//
// Polygons have the following restrictions:
//
// - Loops may not cross, i.e. the boundary of a loop may not intersect
// both the interior and exterior of any other loop.
//
// - Loops may not share edges, i.e. if a loop contains an edge AB, then
// no other loop may contain AB or BA.
//
// - Loops may share vertices, however no vertex may appear twice in a
// single loop (see Loop).
//
// - No loop may be empty. The full loop may appear only in the full polygon.
type Polygon struct {
loops []*Loop
// index is a spatial index of all the polygon loops.
index *ShapeIndex
// hasHoles tracks if this polygon has at least one hole.
hasHoles bool
// numVertices keeps the running total of all of the vertices of the contained loops.
numVertices int
// numEdges tracks the total number of edges in all the loops in this polygon.
numEdges int
// bound is a conservative bound on all points contained by this loop.
// If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
bound Rect
// Since bound is not exact, it is possible that a loop A contains
// another loop B whose bounds are slightly larger. subregionBound
// has been expanded sufficiently to account for this error, i.e.
// if A.Contains(B), then A.subregionBound.Contains(B.bound).
subregionBound Rect
// A slice where element i is the cumulative number of edges in the
// preceding loops in the polygon. This field is used for polygons that
// have a large number of loops, and may be empty for polygons with few loops.
cumulativeEdges []int
}
// PolygonFromLoops constructs a polygon from the given set of loops. The polygon
// interior consists of the points contained by an odd number of loops. (Recall
// that a loop contains the set of points on its left-hand side.)
//
// This method determines the loop nesting hierarchy and assigns every loop a
// depth. Shells have even depths, and holes have odd depths.
//
// Note: The given set of loops are reordered by this method so that the hierarchy
// can be traversed using Parent, LastDescendant and the loops depths.
func PolygonFromLoops(loops []*Loop) *Polygon {
p := &Polygon{}
// Empty polygons do not contain any loops, even the Empty loop.
if len(loops) == 1 && loops[0].IsEmpty() {
p.initLoopProperties()
return p
}
p.loops = loops
p.initNested()
return p
}
// PolygonFromOrientedLoops returns a Polygon from the given set of loops,
// like PolygonFromLoops. It expects loops to be oriented such that the polygon
// interior is on the left-hand side of all loops. This implies that shells
// and holes should have opposite orientations in the input to this method.
// (During initialization, loops representing holes will automatically be
// inverted.)
func PolygonFromOrientedLoops(loops []*Loop) *Polygon {
// Here is the algorithm:
//
// 1. Remember which of the given loops contain OriginPoint.
//
// 2. Invert loops as necessary to ensure that they are nestable (i.e., no
// loop contains the complement of any other loop). This may result in a
// set of loops corresponding to the complement of the given polygon, but
// we will fix that problem later.
//
// We make the loops nestable by first normalizing all the loops (i.e.,
// inverting any loops whose turning angle is negative). This handles
// all loops except those whose turning angle is very close to zero
// (within the maximum error tolerance). Any such loops are inverted if
// and only if they contain OriginPoint(). (In theory this step is only
// necessary if there are at least two such loops.) The resulting set of
// loops is guaranteed to be nestable.
//
// 3. Build the polygon. This yields either the desired polygon or its
// complement.
//
// 4. If there is at least one loop, we find a loop L that is adjacent to
// OriginPoint() (where "adjacent" means that there exists a path
// connecting OriginPoint() to some vertex of L such that the path does
// not cross any loop). There may be a single such adjacent loop, or
// there may be several (in which case they should all have the same
// contains_origin() value). We choose L to be the loop containing the
// origin whose depth is greatest, or loop(0) (a top-level shell) if no
// such loop exists.
//
// 5. If (L originally contained origin) != (polygon contains origin), we
// invert the polygon. This is done by inverting a top-level shell whose
// turning angle is minimal and then fixing the nesting hierarchy. Note
// that because we normalized all the loops initially, this step is only
// necessary if the polygon requires at least one non-normalized loop to
// represent it.
containedOrigin := make(map[*Loop]bool)
for _, l := range loops {
containedOrigin[l] = l.ContainsOrigin()
}
for _, l := range loops {
angle := l.TurningAngle()
if math.Abs(angle) > l.turningAngleMaxError() {
// Normalize the loop.
if angle < 0 {
l.Invert()
}
} else {
// Ensure that the loop does not contain the origin.
if l.ContainsOrigin() {
l.Invert()
}
}
}
p := PolygonFromLoops(loops)
if p.NumLoops() > 0 {
originLoop := p.Loop(0)
polygonContainsOrigin := false
for _, l := range p.Loops() {
if l.ContainsOrigin() {
polygonContainsOrigin = !polygonContainsOrigin
originLoop = l
}
}
if containedOrigin[originLoop] != polygonContainsOrigin {
p.Invert()
}
}
return p
}
// Invert inverts the polygon (replaces it by its complement).
func (p *Polygon) Invert() {
// Inverting any one loop will invert the polygon. The best loop to invert
// is the one whose area is largest, since this yields the smallest area
// after inversion. The loop with the largest area is always at depth 0.
// The descendents of this loop all have their depth reduced by 1, while the
// former siblings of this loop all have their depth increased by 1.
// The empty and full polygons are handled specially.
if p.IsEmpty() {
*p = *FullPolygon()
p.initLoopProperties()
return
}
if p.IsFull() {
*p = Polygon{}
p.initLoopProperties()
return
}
// Find the loop whose area is largest (i.e., whose turning angle is
// smallest), minimizing calls to TurningAngle(). In particular, for
// polygons with a single shell at level 0 there is no need to call
// TurningAngle() at all. (This method is relatively expensive.)
best := 0
const none = 10.0 // Flag that means "not computed yet"
bestAngle := none
for i := 1; i < p.NumLoops(); i++ {
if p.Loop(i).depth != 0 {
continue
}
// We defer computing the turning angle of loop 0 until we discover
// that the polygon has another top-level shell.
if bestAngle == none {
bestAngle = p.Loop(best).TurningAngle()
}
angle := p.Loop(i).TurningAngle()
// We break ties deterministically in order to avoid having the output
// depend on the input order of the loops.
if angle < bestAngle || (angle == bestAngle && compareLoops(p.Loop(i), p.Loop(best)) < 0) {
best = i
bestAngle = angle
}
}
// Build the new loops vector, starting with the inverted loop.
p.Loop(best).Invert()
newLoops := make([]*Loop, 0, p.NumLoops())
// Add the former siblings of this loop as descendants.
lastBest := p.LastDescendant(best)
newLoops = append(newLoops, p.Loop(best))
for i, l := range p.Loops() {
if i < best || i > lastBest {
l.depth++
newLoops = append(newLoops, l)
}
}
// Add the former children of this loop as siblings.
for i, l := range p.Loops() {
if i > best && i <= lastBest {
l.depth--
newLoops = append(newLoops, l)
}
}
p.loops = newLoops
p.initLoopProperties()
}
// Defines a total ordering on Loops that does not depend on the cyclic
// order of loop vertices. This function is used to choose which loop to
// invert in the case where several loops have exactly the same area.
func compareLoops(a, b *Loop) int {
if na, nb := a.NumVertices(), b.NumVertices(); na != nb {
return na - nb
}
ai, aDir := a.CanonicalFirstVertex()
bi, bDir := b.CanonicalFirstVertex()
if aDir != bDir {
return aDir - bDir
}
for n := a.NumVertices() - 1; n >= 0; n, ai, bi = n-1, ai+aDir, bi+bDir {
if cmp := a.Vertex(ai).Cmp(b.Vertex(bi).Vector); cmp != 0 {
return cmp
}
}
return 0
}
// PolygonFromCell returns a Polygon from a single loop created from the given Cell.
func PolygonFromCell(cell Cell) *Polygon {
return PolygonFromLoops([]*Loop{LoopFromCell(cell)})
}
// initNested takes the set of loops in this polygon and performs the nesting
// computations to set the proper nesting and parent/child relationships.
func (p *Polygon) initNested() {
if len(p.loops) == 1 {
p.initOneLoop()
return
}
lm := make(loopMap)
for _, l := range p.loops {
lm.insertLoop(l, nil)
}
// The loops have all been added to the loopMap for ordering. Clear the
// loops slice because we add all the loops in-order in initLoops.
p.loops = nil
// Reorder the loops in depth-first traversal order.
p.initLoops(lm)
p.initLoopProperties()
}
// loopMap is a map of a loop to its immediate children with respect to nesting.
// It is used to determine which loops are shells and which are holes.
type loopMap map[*Loop][]*Loop
// insertLoop adds the given loop to the loop map under the specified parent.
// All children of the new entry are checked to see if the need to move up to
// a different level.
func (lm loopMap) insertLoop(newLoop, parent *Loop) {
var children []*Loop
for done := false; !done; {
children = lm[parent]
done = true
for _, child := range children {
if child.ContainsNested(newLoop) {
parent = child
done = false
break
}
}
}
// Now, we have found a parent for this loop, it may be that some of the
// children of the parent of this loop may now be children of the new loop.
newChildren := lm[newLoop]
for i := 0; i < len(children); {
child := children[i]
if newLoop.ContainsNested(child) {
newChildren = append(newChildren, child)
children = append(children[0:i], children[i+1:]...)
} else {
i++
}
}
lm[newLoop] = newChildren
lm[parent] = append(children, newLoop)
}
// loopStack simplifies access to the loops while being initialized.
type loopStack []*Loop
func (s *loopStack) push(v *Loop) {
*s = append(*s, v)
}
func (s *loopStack) pop() *Loop {
l := len(*s)
r := (*s)[l-1]
*s = (*s)[:l-1]
return r
}
// initLoops walks the mapping of loops to all of their children, and adds them in
// order into to the polygons set of loops.
func (p *Polygon) initLoops(lm loopMap) {
var stack loopStack
stack.push(nil)
depth := -1
for len(stack) > 0 {
loop := stack.pop()
if loop != nil {
depth = loop.depth
p.loops = append(p.loops, loop)
}
children := lm[loop]
for i := len(children) - 1; i >= 0; i-- {
child := children[i]
child.depth = depth + 1
stack.push(child)
}
}
}
// initOneLoop set the properties for a polygon made of a single loop.
// TODO(roberts): Can this be merged with initLoopProperties
func (p *Polygon) initOneLoop() {
p.hasHoles = false
p.numVertices = len(p.loops[0].vertices)
p.bound = p.loops[0].RectBound()
p.subregionBound = ExpandForSubregions(p.bound)
// Ensure the loops depth is set correctly.
p.loops[0].depth = 0
p.initEdgesAndIndex()
}
// initLoopProperties sets the properties for polygons with multiple loops.
func (p *Polygon) initLoopProperties() {
p.numVertices = 0
// the loops depths are set by initNested/initOriented prior to this.
p.bound = EmptyRect()
p.hasHoles = false
for _, l := range p.loops {
if l.IsHole() {
p.hasHoles = true
} else {
p.bound = p.bound.Union(l.RectBound())
}
p.numVertices += l.NumVertices()
}
p.subregionBound = ExpandForSubregions(p.bound)
p.initEdgesAndIndex()
}
// initEdgesAndIndex performs the shape related initializations and adds the final
// polygon to the index.
func (p *Polygon) initEdgesAndIndex() {
p.numEdges = 0
p.cumulativeEdges = nil
if p.IsFull() {
return
}
const maxLinearSearchLoops = 12 // Based on benchmarks.
if len(p.loops) > maxLinearSearchLoops {
p.cumulativeEdges = make([]int, 0, len(p.loops))
}
for _, l := range p.loops {
if p.cumulativeEdges != nil {
p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges)
}
p.numEdges += len(l.vertices)
}
p.index = NewShapeIndex()
p.index.Add(p)
}
// FullPolygon returns a special "full" polygon.
func FullPolygon() *Polygon {
ret := &Polygon{
loops: []*Loop{
FullLoop(),
},
numVertices: len(FullLoop().Vertices()),
bound: FullRect(),
subregionBound: FullRect(),
}
ret.initEdgesAndIndex()
return ret
}
// Validate checks whether this is a valid polygon,
// including checking whether all the loops are themselves valid.
func (p *Polygon) Validate() error {
for i, l := range p.loops {
// Check for loop errors that don't require building a ShapeIndex.
if err := l.findValidationErrorNoIndex(); err != nil {
return fmt.Errorf("loop %d: %v", i, err)
}
// Check that no loop is empty, and that the full loop only appears in the
// full polygon.
if l.IsEmpty() {
return fmt.Errorf("loop %d: empty loops are not allowed", i)
}
if l.IsFull() && len(p.loops) > 1 {
return fmt.Errorf("loop %d: full loop appears in non-full polygon", i)
}
}
// TODO(roberts): Uncomment the remaining checks when they are completed.
// Check for loop self-intersections and loop pairs that cross
// (including duplicate edges and vertices).
// if findSelfIntersection(p.index) {
// return fmt.Errorf("polygon has loop pairs that cross")
// }
// Check whether initOriented detected inconsistent loop orientations.
// if p.hasInconsistentLoopOrientations {
// return fmt.Errorf("inconsistent loop orientations detected")
// }
// Finally, verify the loop nesting hierarchy.
return p.findLoopNestingError()
}
// findLoopNestingError reports if there is an error in the loop nesting hierarchy.
func (p *Polygon) findLoopNestingError() error {
// First check that the loop depths make sense.
lastDepth := -1
for i, l := range p.loops {
depth := l.depth
if depth < 0 || depth > lastDepth+1 {
return fmt.Errorf("loop %d: invalid loop depth (%d)", i, depth)
}
lastDepth = depth
}
// Then check that they correspond to the actual loop nesting. This test
// is quadratic in the number of loops but the cost per iteration is small.
for i, l := range p.loops {
last := p.LastDescendant(i)
for j, l2 := range p.loops {
if i == j {
continue
}
nested := (j >= i+1) && (j <= last)
const reverseB = false
if l.containsNonCrossingBoundary(l2, reverseB) != nested {
nestedStr := ""
if !nested {
nestedStr = "not "
}
return fmt.Errorf("invalid nesting: loop %d should %scontain loop %d", i, nestedStr, j)
}
}
}
return nil
}
// IsEmpty reports whether this is the special "empty" polygon (consisting of no loops).
func (p *Polygon) IsEmpty() bool {
return len(p.loops) == 0
}
// IsFull reports whether this is the special "full" polygon (consisting of a
// single loop that encompasses the entire sphere).
func (p *Polygon) IsFull() bool {
return len(p.loops) == 1 && p.loops[0].IsFull()
}
// NumLoops returns the number of loops in this polygon.
func (p *Polygon) NumLoops() int {
return len(p.loops)
}
// Loops returns the loops in this polygon.
func (p *Polygon) Loops() []*Loop {
return p.loops
}
// Loop returns the loop at the given index. Note that during initialization,
// the given loops are reordered according to a pre-order traversal of the loop
// nesting hierarchy. This implies that every loop is immediately followed by
// its descendants. This hierarchy can be traversed using the methods Parent,
// LastDescendant, and Loop.depth.
func (p *Polygon) Loop(k int) *Loop {
return p.loops[k]
}
// Parent returns the index of the parent of loop k.
// If the loop does not have a parent, ok=false is returned.
func (p *Polygon) Parent(k int) (index int, ok bool) {
// See where we are on the depth hierarchy.
depth := p.loops[k].depth
if depth == 0 {
return -1, false
}
// There may be several loops at the same nesting level as us that share a
// parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop.
// we don't know how many may be next to us before we get back to our parent loop.)
// Move up one position from us, and then begin traversing back through the set of loops
// until we find the one that is our parent or we get to the top of the polygon.
for k--; k >= 0 && p.loops[k].depth <= depth; k-- {
}
return k, true
}
// LastDescendant returns the index of the last loop that is contained within loop k.
// If k is negative, it returns the last loop in the polygon.
// Note that loops are indexed according to a pre-order traversal of the nesting
// hierarchy, so the immediate children of loop k can be found by iterating over
// the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal
// to Loop(k).depth+1.
func (p *Polygon) LastDescendant(k int) int {
if k < 0 {
return len(p.loops) - 1
}
depth := p.loops[k].depth
// Find the next loop immediately past us in the set of loops, and then start
// moving down the list until we either get to the end or find the next loop
// that is higher up the hierarchy than we are.
for k++; k < len(p.loops) && p.loops[k].depth > depth; k++ {
}
return k - 1
}
// CapBound returns a bounding spherical cap.
func (p *Polygon) CapBound() Cap { return p.bound.CapBound() }
// RectBound returns a bounding latitude-longitude rectangle.
func (p *Polygon) RectBound() Rect { return p.bound }
// ContainsPoint reports whether the polygon contains the point.
func (p *Polygon) ContainsPoint(point Point) bool {
// NOTE: A bounds check slows down this function by about 50%. It is
// worthwhile only when it might allow us to delay building the index.
if !p.index.IsFresh() && !p.bound.ContainsPoint(point) {
return false
}
// For small polygons, and during initial construction, it is faster to just
// check all the crossing.
const maxBruteForceVertices = 32
if p.numVertices < maxBruteForceVertices || p.index == nil {
inside := false
for _, l := range p.loops {
// use loops bruteforce to avoid building the index on each loop.
inside = inside != l.bruteForceContainsPoint(point)
}
return inside
}
// Otherwise we look up the ShapeIndex cell containing this point.
return NewContainsPointQuery(p.index, VertexModelSemiOpen).Contains(point)
}
// ContainsCell reports whether the polygon contains the given cell.
func (p *Polygon) ContainsCell(cell Cell) bool {
it := p.index.Iterator()
relation := it.LocateCellID(cell.ID())
// If "cell" is disjoint from all index cells, it is not contained.
// Similarly, if "cell" is subdivided into one or more index cells then it
// is not contained, since index cells are subdivided only if they (nearly)
// intersect a sufficient number of edges. (But note that if "cell" itself
// is an index cell then it may be contained, since it could be a cell with
// no edges in the loop interior.)
if relation != Indexed {
return false
}
// Otherwise check if any edges intersect "cell".
if p.boundaryApproxIntersects(it, cell) {
return false
}
// Otherwise check if the loop contains the center of "cell".
return p.iteratorContainsPoint(it, cell.Center())
}
// IntersectsCell reports whether the polygon intersects the given cell.
func (p *Polygon) IntersectsCell(cell Cell) bool {
it := p.index.Iterator()
relation := it.LocateCellID(cell.ID())
// If cell does not overlap any index cell, there is no intersection.
if relation == Disjoint {
return false
}
// If cell is subdivided into one or more index cells, there is an
// intersection to within the S2ShapeIndex error bound (see Contains).
if relation == Subdivided {
return true
}
// If cell is an index cell, there is an intersection because index cells
// are created only if they have at least one edge or they are entirely
// contained by the loop.
if it.CellID() == cell.id {
return true
}
// Otherwise check if any edges intersect cell.
if p.boundaryApproxIntersects(it, cell) {
return true
}
// Otherwise check if the loop contains the center of cell.
return p.iteratorContainsPoint(it, cell.Center())
}
// CellUnionBound computes a covering of the Polygon.
func (p *Polygon) CellUnionBound() []CellID {
// TODO(roberts): Use ShapeIndexRegion when it's available.
return p.CapBound().CellUnionBound()
}
// boundaryApproxIntersects reports whether the loop's boundary intersects cell.
// It may also return true when the loop boundary does not intersect cell but
// some edge comes within the worst-case error tolerance.
//
// This requires that it.Locate(cell) returned Indexed.
func (p *Polygon) boundaryApproxIntersects(it *ShapeIndexIterator, cell Cell) bool {
aClipped := it.IndexCell().findByShapeID(0)
// If there are no edges, there is no intersection.
if len(aClipped.edges) == 0 {
return false
}
// We can save some work if cell is the index cell itself.
if it.CellID() == cell.ID() {
return true
}
// Otherwise check whether any of the edges intersect cell.
maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist)
bound := cell.BoundUV().ExpandedByMargin(maxError)
for _, e := range aClipped.edges {
edge := p.index.Shape(0).Edge(e)
v0, v1, ok := ClipToPaddedFace(edge.V0, edge.V1, cell.Face(), maxError)
if ok && edgeIntersectsRect(v0, v1, bound) {
return true
}
}
return false
}
// iteratorContainsPoint reports whether the iterator that is positioned at the
// ShapeIndexCell that may contain p, contains the point p.
func (p *Polygon) iteratorContainsPoint(it *ShapeIndexIterator, point Point) bool {
// Test containment by drawing a line segment from the cell center to the
// given point and counting edge crossings.
aClipped := it.IndexCell().findByShapeID(0)
inside := aClipped.containsCenter
if len(aClipped.edges) == 0 {
return inside
}
// This block requires ShapeIndex.
crosser := NewEdgeCrosser(it.Center(), point)
shape := p.index.Shape(0)
for _, e := range aClipped.edges {
edge := shape.Edge(e)
inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1)
}
return inside
}
// Shape Interface
// NumEdges returns the number of edges in this shape.
func (p *Polygon) NumEdges() int {
return p.numEdges
}
// Edge returns endpoints for the given edge index.
func (p *Polygon) Edge(e int) Edge {
var i int
if len(p.cumulativeEdges) > 0 {
for i = range p.cumulativeEdges {
if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] {
e -= p.cumulativeEdges[i]
break
}
}
} else {
// When the number of loops is small, use linear search. Most often
// there is exactly one loop and the code below executes zero times.
for i = 0; e >= len(p.Loop(i).vertices); i++ {
e -= len(p.Loop(i).vertices)
}
}
return Edge{p.Loop(i).OrientedVertex(e), p.Loop(i).OrientedVertex(e + 1)}
}
// ReferencePoint returns the reference point for this polygon.
func (p *Polygon) ReferencePoint() ReferencePoint {
containsOrigin := false
for _, l := range p.loops {
containsOrigin = containsOrigin != l.ContainsOrigin()
}
return OriginReferencePoint(containsOrigin)
}
// NumChains reports the number of contiguous edge chains in the Polygon.
func (p *Polygon) NumChains() int {
return p.NumLoops()
}
// Chain returns the i-th edge Chain (loop) in the Shape.
func (p *Polygon) Chain(chainID int) Chain {
if p.cumulativeEdges != nil {
return Chain{p.cumulativeEdges[chainID], len(p.Loop(chainID).vertices)}
}
e := 0
for j := 0; j < chainID; j++ {
e += len(p.Loop(j).vertices)
}
// Polygon represents a full loop as a loop with one vertex, while
// Shape represents a full loop as a chain with no vertices.
if numVertices := p.Loop(chainID).NumVertices(); numVertices != 1 {
return Chain{e, numVertices}
}
return Chain{e, 0}
}
// ChainEdge returns the j-th edge of the i-th edge Chain (loop).
func (p *Polygon) ChainEdge(i, j int) Edge {
return Edge{p.Loop(i).OrientedVertex(j), p.Loop(i).OrientedVertex(j + 1)}
}
// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
// of the i-th edge Chain.
func (p *Polygon) ChainPosition(edgeID int) ChainPosition {
var i int
if len(p.cumulativeEdges) > 0 {
for i = range p.cumulativeEdges {
if i+1 >= len(p.cumulativeEdges) || edgeID < p.cumulativeEdges[i+1] {
edgeID -= p.cumulativeEdges[i]
break
}
}
} else {
// When the number of loops is small, use linear search. Most often
// there is exactly one loop and the code below executes zero times.
for i = 0; edgeID >= len(p.Loop(i).vertices); i++ {
edgeID -= len(p.Loop(i).vertices)
}
}
// TODO(roberts): unify this and Edge since they are mostly identical.
return ChainPosition{i, edgeID}
}
// Dimension returns the dimension of the geometry represented by this Polygon.
func (p *Polygon) Dimension() int { return 2 }
func (p *Polygon) typeTag() typeTag { return typeTagPolygon }
func (p *Polygon) privateInterface() {}
// Contains reports whether this polygon contains the other polygon.
// Specifically, it reports whether all the points in the other polygon
// are also in this polygon.
func (p *Polygon) Contains(o *Polygon) bool {
// If both polygons have one loop, use the more efficient Loop method.
// Note that Loop's Contains does its own bounding rectangle check.
if len(p.loops) == 1 && len(o.loops) == 1 {
return p.loops[0].Contains(o.loops[0])
}
// Otherwise if neither polygon has holes, we can still use the more
// efficient Loop's Contains method (rather than compareBoundary),
// but it's worthwhile to do our own bounds check first.
if !p.subregionBound.Contains(o.bound) {
// Even though Bound(A) does not contain Bound(B), it is still possible
// that A contains B. This can only happen when union of the two bounds
// spans all longitudes. For example, suppose that B consists of two
// shells with a longitude gap between them, while A consists of one shell
// that surrounds both shells of B but goes the other way around the
// sphere (so that it does not intersect the longitude gap).
if !p.bound.Lng.Union(o.bound.Lng).IsFull() {
return false
}
}
if !p.hasHoles && !o.hasHoles {
for _, l := range o.loops {
if !p.anyLoopContains(l) {
return false
}
}
return true
}
// Polygon A contains B iff B does not intersect the complement of A. From
// the intersection algorithm below, this means that the complement of A
// must exclude the entire boundary of B, and B must exclude all shell
// boundaries of the complement of A. (It can be shown that B must then
// exclude the entire boundary of the complement of A.) The first call
// below returns false if the boundaries cross, therefore the second call
// does not need to check for any crossing edges (which makes it cheaper).
return p.containsBoundary(o) && o.excludesNonCrossingComplementShells(p)
}
// Intersects reports whether this polygon intersects the other polygon, i.e.
// if there is a point that is contained by both polygons.
func (p *Polygon) Intersects(o *Polygon) bool {
// If both polygons have one loop, use the more efficient Loop method.
// Note that Loop Intersects does its own bounding rectangle check.
if len(p.loops) == 1 && len(o.loops) == 1 {
return p.loops[0].Intersects(o.loops[0])
}
// Otherwise if neither polygon has holes, we can still use the more
// efficient Loop.Intersects method. The polygons intersect if and
// only if some pair of loop regions intersect.
if !p.bound.Intersects(o.bound) {
return false
}
if !p.hasHoles && !o.hasHoles {
for _, l := range o.loops {
if p.anyLoopIntersects(l) {
return true
}
}
return false
}
// Polygon A is disjoint from B if A excludes the entire boundary of B and B
// excludes all shell boundaries of A. (It can be shown that B must then
// exclude the entire boundary of A.) The first call below returns false if
// the boundaries cross, therefore the second call does not need to check
// for crossing edges.
return !p.excludesBoundary(o) || !o.excludesNonCrossingShells(p)
}
// compareBoundary returns +1 if this polygon contains the boundary of B, -1 if A
// excludes the boundary of B, and 0 if the boundaries of A and B cross.
func (p *Polygon) compareBoundary(o *Loop) int {
result := -1
for i := 0; i < len(p.loops) && result != 0; i++ {
// If B crosses any loop of A, the result is 0. Otherwise the result
// changes sign each time B is contained by a loop of A.
result *= -p.loops[i].compareBoundary(o)
}
return result
}
// containsBoundary reports whether this polygon contains the entire boundary of B.
func (p *Polygon) containsBoundary(o *Polygon) bool {
for _, l := range o.loops {
if p.compareBoundary(l) <= 0 {
return false
}
}
return true
}
// excludesBoundary reports whether this polygon excludes the entire boundary of B.
func (p *Polygon) excludesBoundary(o *Polygon) bool {
for _, l := range o.loops {
if p.compareBoundary(l) >= 0 {
return false
}
}
return true
}
// containsNonCrossingBoundary reports whether polygon A contains the boundary of
// loop B. Shared edges are handled according to the rule described in loops
// containsNonCrossingBoundary.
func (p *Polygon) containsNonCrossingBoundary(o *Loop, reverse bool) bool {
var inside bool
for _, l := range p.loops {
x := l.containsNonCrossingBoundary(o, reverse)
inside = (inside != x)
}
return inside
}
// excludesNonCrossingShells reports wheterh given two polygons A and B such that the
// boundary of A does not cross any loop of B, if A excludes all shell boundaries of B.
func (p *Polygon) excludesNonCrossingShells(o *Polygon) bool {
for _, l := range o.loops {
if l.IsHole() {
continue
}
if p.containsNonCrossingBoundary(l, false) {
return false
}
}
return true
}
// excludesNonCrossingComplementShells reports whether given two polygons A and B
// such that the boundary of A does not cross any loop of B, if A excludes all
// shell boundaries of the complement of B.
func (p *Polygon) excludesNonCrossingComplementShells(o *Polygon) bool {
// Special case to handle the complement of the empty or full polygons.
if o.IsEmpty() {
return !p.IsFull()
}
if o.IsFull() {
return true
}
// Otherwise the complement of B may be obtained by inverting loop(0) and
// then swapping the shell/hole status of all other loops. This implies
// that the shells of the complement consist of loop 0 plus all the holes of
// the original polygon.
for j, l := range o.loops {
if j > 0 && !l.IsHole() {
continue
}
// The interior of the complement is to the right of loop 0, and to the
// left of the loops that were originally holes.
if p.containsNonCrossingBoundary(l, j == 0) {
return false
}
}
return true
}
// anyLoopContains reports whether any loop in this polygon contains the given loop.
func (p *Polygon) anyLoopContains(o *Loop) bool {
for _, l := range p.loops {
if l.Contains(o) {
return true
}
}
return false
}
// anyLoopIntersects reports whether any loop in this polygon intersects the given loop.
func (p *Polygon) anyLoopIntersects(o *Loop) bool {
for _, l := range p.loops {
if l.Intersects(o) {
return true
}
}
return false
}
// Area returns the area of the polygon interior, i.e. the region on the left side
// of an odd number of loops. The return value is between 0 and 4*Pi.
func (p *Polygon) Area() float64 {
var area float64
for _, loop := range p.loops {
area += float64(loop.Sign()) * loop.Area()
}
return area
}
// Encode encodes the Polygon
func (p *Polygon) Encode(w io.Writer) error {
e := &encoder{w: w}
p.encode(e)
return e.err
}
// encode only supports lossless encoding and not compressed format.
func (p *Polygon) encode(e *encoder) {
if p.numVertices == 0 {
p.encodeCompressed(e, maxLevel, nil)
return
}
// Convert all the polygon vertices to XYZFaceSiTi format.
vs := make([]xyzFaceSiTi, 0, p.numVertices)
for _, l := range p.loops {
vs = append(vs, l.xyzFaceSiTiVertices()...)
}
// Computes a histogram of the cell levels at which the vertices are snapped.
// (histogram[0] is the number of unsnapped vertices, histogram[i] the number
// of vertices snapped at level i-1).
histogram := make([]int, maxLevel+2)
for _, v := range vs {
histogram[v.level+1]++
}
// Compute the level at which most of the vertices are snapped.
// If multiple levels have the same maximum number of vertices
// snapped to it, the first one (lowest level number / largest
// area / smallest encoding length) will be chosen, so this
// is desired.
var snapLevel, numSnapped int
for level, h := range histogram[1:] {
if h > numSnapped {
snapLevel, numSnapped = level, h
}
}
// Choose an encoding format based on the number of unsnapped vertices and a
// rough estimate of the encoded sizes.
numUnsnapped := p.numVertices - numSnapped // Number of vertices that won't be snapped at snapLevel.
const pointSize = 3 * 8 // s2.Point is an r3.Vector, which is 3 float64s. That's 3*8 = 24 bytes.
compressedSize := 4*p.numVertices + (pointSize+2)*numUnsnapped
losslessSize := pointSize * p.numVertices
if compressedSize < losslessSize {
p.encodeCompressed(e, snapLevel, vs)
} else {
p.encodeLossless(e)
}
}
// encodeLossless encodes the polygon's Points as float64s.
func (p *Polygon) encodeLossless(e *encoder) {
e.writeInt8(encodingVersion)
e.writeBool(true) // a legacy c++ value. must be true.
e.writeBool(p.hasHoles)
e.writeUint32(uint32(len(p.loops)))
if e.err != nil {
return
}
if len(p.loops) > maxEncodedLoops {
e.err = fmt.Errorf("too many loops (%d; max is %d)", len(p.loops), maxEncodedLoops)
return
}
for _, l := range p.loops {
l.encode(e)
}
// Encode the bound.
p.bound.encode(e)
}
func (p *Polygon) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) {
e.writeUint8(uint8(encodingCompressedVersion))
e.writeUint8(uint8(snapLevel))
e.writeUvarint(uint64(len(p.loops)))
if e.err != nil {
return
}
if l := len(p.loops); l > maxEncodedLoops {
e.err = fmt.Errorf("too many loops to encode: %d; max is %d", l, maxEncodedLoops)
return
}
for _, l := range p.loops {
l.encodeCompressed(e, snapLevel, vertices[:len(l.vertices)])
vertices = vertices[len(l.vertices):]
}
// Do not write the bound, num_vertices, or has_holes_ as they can be
// cheaply recomputed by decodeCompressed. Microbenchmarks show the
// speed difference is inconsequential.
}
// Decode decodes the Polygon.
func (p *Polygon) Decode(r io.Reader) error {
d := &decoder{r: asByteReader(r)}
version := int8(d.readUint8())
var dec func(*decoder)
switch version {
case encodingVersion:
dec = p.decode
case encodingCompressedVersion:
dec = p.decodeCompressed
default:
return fmt.Errorf("unsupported version %d", version)
}
dec(d)
return d.err
}
// maxEncodedLoops is the biggest supported number of loops in a polygon during encoding.
// Setting a maximum guards an allocation: it prevents an attacker from easily pushing us OOM.
const maxEncodedLoops = 10000000
func (p *Polygon) decode(d *decoder) {
*p = Polygon{}
d.readUint8() // Ignore irrelevant serialized owns_loops_ value.
p.hasHoles = d.readBool()
// Polygons with no loops are explicitly allowed here: a newly created
// polygon has zero loops and such polygons encode and decode properly.
nloops := d.readUint32()
if d.err != nil {
return
}
if nloops > maxEncodedLoops {
d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
return
}
p.loops = make([]*Loop, nloops)
for i := range p.loops {
p.loops[i] = new(Loop)
p.loops[i].decode(d)
p.numVertices += len(p.loops[i].vertices)
}
p.bound.decode(d)
if d.err != nil {
return
}
p.subregionBound = ExpandForSubregions(p.bound)
p.initEdgesAndIndex()
}
func (p *Polygon) decodeCompressed(d *decoder) {
snapLevel := int(d.readUint8())
if snapLevel > maxLevel {
d.err = fmt.Errorf("snaplevel too big: %d", snapLevel)
return
}
// Polygons with no loops are explicitly allowed here: a newly created
// polygon has zero loops and such polygons encode and decode properly.
nloops := int(d.readUvarint())
if nloops > maxEncodedLoops {
d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
}
p.loops = make([]*Loop, nloops)
for i := range p.loops {
p.loops[i] = new(Loop)
p.loops[i].decodeCompressed(d, snapLevel)
}
p.initLoopProperties()
}
// TODO(roberts): Differences from C++
// Centroid
// SnapLevel
// DistanceToPoint
// DistanceToBoundary
// Project
// ProjectToBoundary
// ApproxContains/ApproxDisjoint for Polygons
// InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff}
// InitToSimplified
// InitToSnapped
// IntersectWithPolyline
// ApproxIntersectWithPolyline
// SubtractFromPolyline
// ApproxSubtractFromPolyline
// DestructiveUnion
// DestructiveApproxUnion
// InitToCellUnionBorder
// IsNormalized
// Equal/BoundaryEqual/BoundaryApproxEqual/BoundaryNear Polygons
// BreakEdgesAndAddToBuilder
//
// clearLoops
// findLoopNestingError
// initToSimplifiedInternal
// internalClipPolyline
// clipBoundary