1318 lines
35 KiB
Go
1318 lines
35 KiB
Go
|
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
|
||
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
||
|
|
||
|
package codec
|
||
|
|
||
|
import (
|
||
|
"encoding"
|
||
|
"errors"
|
||
|
"io"
|
||
|
"reflect"
|
||
|
"sort"
|
||
|
"strconv"
|
||
|
"time"
|
||
|
)
|
||
|
|
||
|
// defEncByteBufSize is the default size of []byte used
|
||
|
// for bufio buffer or []byte (when nil passed)
|
||
|
const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
|
||
|
|
||
|
var errEncoderNotInitialized = errors.New("Encoder not initialized")
|
||
|
|
||
|
// encDriver abstracts the actual codec (binc vs msgpack, etc)
|
||
|
type encDriver interface {
|
||
|
EncodeNil()
|
||
|
EncodeInt(i int64)
|
||
|
EncodeUint(i uint64)
|
||
|
EncodeBool(b bool)
|
||
|
EncodeFloat32(f float32)
|
||
|
EncodeFloat64(f float64)
|
||
|
EncodeRawExt(re *RawExt)
|
||
|
EncodeExt(v interface{}, xtag uint64, ext Ext)
|
||
|
// EncodeString using cUTF8, honor'ing StringToRaw flag
|
||
|
EncodeString(v string)
|
||
|
EncodeStringBytesRaw(v []byte)
|
||
|
EncodeTime(time.Time)
|
||
|
WriteArrayStart(length int)
|
||
|
WriteArrayEnd()
|
||
|
WriteMapStart(length int)
|
||
|
WriteMapEnd()
|
||
|
|
||
|
reset()
|
||
|
atEndOfEncode()
|
||
|
encoder() *Encoder
|
||
|
}
|
||
|
|
||
|
type encDriverContainerTracker interface {
|
||
|
WriteArrayElem()
|
||
|
WriteMapElemKey()
|
||
|
WriteMapElemValue()
|
||
|
}
|
||
|
|
||
|
type encDriverNoopContainerWriter struct{}
|
||
|
|
||
|
func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
|
||
|
func (encDriverNoopContainerWriter) WriteArrayEnd() {}
|
||
|
func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
|
||
|
func (encDriverNoopContainerWriter) WriteMapEnd() {}
|
||
|
func (encDriverNoopContainerWriter) atEndOfEncode() {}
|
||
|
|
||
|
// EncodeOptions captures configuration options during encode.
|
||
|
type EncodeOptions struct {
|
||
|
// WriterBufferSize is the size of the buffer used when writing.
|
||
|
//
|
||
|
// if > 0, we use a smart buffer internally for performance purposes.
|
||
|
WriterBufferSize int
|
||
|
|
||
|
// ChanRecvTimeout is the timeout used when selecting from a chan.
|
||
|
//
|
||
|
// Configuring this controls how we receive from a chan during the encoding process.
|
||
|
// - If ==0, we only consume the elements currently available in the chan.
|
||
|
// - if <0, we consume until the chan is closed.
|
||
|
// - If >0, we consume until this timeout.
|
||
|
ChanRecvTimeout time.Duration
|
||
|
|
||
|
// StructToArray specifies to encode a struct as an array, and not as a map
|
||
|
StructToArray bool
|
||
|
|
||
|
// Canonical representation means that encoding a value will always result in the same
|
||
|
// sequence of bytes.
|
||
|
//
|
||
|
// This only affects maps, as the iteration order for maps is random.
|
||
|
//
|
||
|
// The implementation MAY use the natural sort order for the map keys if possible:
|
||
|
//
|
||
|
// - If there is a natural sort order (ie for number, bool, string or []byte keys),
|
||
|
// then the map keys are first sorted in natural order and then written
|
||
|
// with corresponding map values to the strema.
|
||
|
// - If there is no natural sort order, then the map keys will first be
|
||
|
// encoded into []byte, and then sorted,
|
||
|
// before writing the sorted keys and the corresponding map values to the stream.
|
||
|
//
|
||
|
Canonical bool
|
||
|
|
||
|
// CheckCircularRef controls whether we check for circular references
|
||
|
// and error fast during an encode.
|
||
|
//
|
||
|
// If enabled, an error is received if a pointer to a struct
|
||
|
// references itself either directly or through one of its fields (iteratively).
|
||
|
//
|
||
|
// This is opt-in, as there may be a performance hit to checking circular references.
|
||
|
CheckCircularRef bool
|
||
|
|
||
|
// RecursiveEmptyCheck controls how we determine whether a value is empty.
|
||
|
//
|
||
|
// If true, we descend into interfaces and pointers and check struct fields one by one to
|
||
|
// see if empty. In this mode, we honor IsZero, Comparable, IsCodecEmpty(), etc.
|
||
|
// Note: This will make OmitEmpty more expensive due to the large number of reflect calls.
|
||
|
//
|
||
|
// If false, we check if the value is equal to its zero value (newly allocated state).
|
||
|
RecursiveEmptyCheck bool
|
||
|
|
||
|
// Raw controls whether we encode Raw values.
|
||
|
// This is a "dangerous" option and must be explicitly set.
|
||
|
// If set, we blindly encode Raw values as-is, without checking
|
||
|
// if they are a correct representation of a value in that format.
|
||
|
// If unset, we error out.
|
||
|
Raw bool
|
||
|
|
||
|
// StringToRaw controls how strings are encoded.
|
||
|
//
|
||
|
// As a go string is just an (immutable) sequence of bytes,
|
||
|
// it can be encoded either as raw bytes or as a UTF string.
|
||
|
//
|
||
|
// By default, strings are encoded as UTF-8.
|
||
|
// but can be treated as []byte during an encode.
|
||
|
//
|
||
|
// Note that things which we know (by definition) to be UTF-8
|
||
|
// are ALWAYS encoded as UTF-8 strings.
|
||
|
// These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
|
||
|
StringToRaw bool
|
||
|
|
||
|
// OptimumSize controls whether we optimize for the smallest size.
|
||
|
//
|
||
|
// Some formats will use this flag to determine whether to encode
|
||
|
// in the smallest size possible, even if it takes slightly longer.
|
||
|
//
|
||
|
// For example, some formats that support half-floats might check if it is possible
|
||
|
// to store a float64 as a half float. Doing this check has a small performance cost,
|
||
|
// but the benefit is that the encoded message will be smaller.
|
||
|
OptimumSize bool
|
||
|
}
|
||
|
|
||
|
// ---------------------------------------------
|
||
|
|
||
|
func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeRawExt(rv2i(rv).(*RawExt))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
|
||
|
rv2i(rv).(Selfer).CodecEncodeSelf(e)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
|
||
|
bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
|
||
|
e.marshalRaw(bs, fnerr)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
|
||
|
bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
|
||
|
e.marshalUtf8(bs, fnerr)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
|
||
|
bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
|
||
|
e.marshalAsis(bs, fnerr)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.rawBytes(rv2i(rv).(Raw))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeBool(rvGetBool(rv))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeTime(rvGetTime(rv))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeString(rvGetString(rv))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeFloat64(rvGetFloat64(rv))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeFloat32(rvGetFloat32(rv))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeInt(int64(rvGetInt(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeInt(int64(rvGetInt8(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeInt(int64(rvGetInt16(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeInt(int64(rvGetInt32(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeInt(int64(rvGetInt64(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeUint(uint64(rvGetUint(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeUint(uint64(rvGetUint8(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeUint(uint64(rvGetUint16(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeUint(uint64(rvGetUint32(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeUint(uint64(rvGetUint64(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.e.EncodeUint(uint64(rvGetUintptr(rv)))
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
|
||
|
e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
|
||
|
}
|
||
|
|
||
|
func chanToSlice(rv reflect.Value, rtslice reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
|
||
|
rvcs = rvZero(rtslice)
|
||
|
if timeout < 0 { // consume until close
|
||
|
for {
|
||
|
recv, recvOk := rv.Recv()
|
||
|
if !recvOk {
|
||
|
break
|
||
|
}
|
||
|
rvcs = reflect.Append(rvcs, recv)
|
||
|
}
|
||
|
} else {
|
||
|
cases := make([]reflect.SelectCase, 2)
|
||
|
cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
|
||
|
if timeout == 0 {
|
||
|
cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
|
||
|
} else {
|
||
|
tt := time.NewTimer(timeout)
|
||
|
cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv4i(tt.C)}
|
||
|
}
|
||
|
for {
|
||
|
chosen, recv, recvOk := reflect.Select(cases)
|
||
|
if chosen == 1 || !recvOk {
|
||
|
break
|
||
|
}
|
||
|
rvcs = reflect.Append(rvcs, recv)
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kSeqFn(rtelem reflect.Type) (fn *codecFn) {
|
||
|
for rtelem.Kind() == reflect.Ptr {
|
||
|
rtelem = rtelem.Elem()
|
||
|
}
|
||
|
// if kind is reflect.Interface, do not pre-determine the
|
||
|
// encoding type, because preEncodeValue may break it down to
|
||
|
// a concrete type and kInterface will bomb.
|
||
|
if rtelem.Kind() != reflect.Interface {
|
||
|
fn = e.h.fn(rtelem)
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kSliceWMbs(rv reflect.Value, ti *typeInfo) {
|
||
|
var l = rvLenSlice(rv)
|
||
|
if l == 0 {
|
||
|
e.mapStart(0)
|
||
|
} else {
|
||
|
e.haltOnMbsOddLen(l)
|
||
|
e.mapStart(l >> 1) // e.mapStart(l / 2)
|
||
|
fn := e.kSeqFn(ti.elem)
|
||
|
for j := 0; j < l; j++ {
|
||
|
if j&1 == 0 { // j%2 == 0 {
|
||
|
e.mapElemKey()
|
||
|
} else {
|
||
|
e.mapElemValue()
|
||
|
}
|
||
|
e.encodeValue(rvSliceIndex(rv, j, ti), fn)
|
||
|
}
|
||
|
}
|
||
|
e.mapEnd()
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kSliceW(rv reflect.Value, ti *typeInfo) {
|
||
|
var l = rvLenSlice(rv)
|
||
|
e.arrayStart(l)
|
||
|
if l > 0 {
|
||
|
fn := e.kSeqFn(ti.elem)
|
||
|
for j := 0; j < l; j++ {
|
||
|
e.arrayElem()
|
||
|
e.encodeValue(rvSliceIndex(rv, j, ti), fn)
|
||
|
}
|
||
|
}
|
||
|
e.arrayEnd()
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kArrayWMbs(rv reflect.Value, ti *typeInfo) {
|
||
|
var l = rvLenArray(rv)
|
||
|
if l == 0 {
|
||
|
e.mapStart(0)
|
||
|
} else {
|
||
|
e.haltOnMbsOddLen(l)
|
||
|
e.mapStart(l >> 1) // e.mapStart(l / 2)
|
||
|
fn := e.kSeqFn(ti.elem)
|
||
|
for j := 0; j < l; j++ {
|
||
|
if j&1 == 0 { // j%2 == 0 {
|
||
|
e.mapElemKey()
|
||
|
} else {
|
||
|
e.mapElemValue()
|
||
|
}
|
||
|
e.encodeValue(rv.Index(j), fn)
|
||
|
}
|
||
|
}
|
||
|
e.mapEnd()
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kArrayW(rv reflect.Value, ti *typeInfo) {
|
||
|
var l = rvLenArray(rv)
|
||
|
e.arrayStart(l)
|
||
|
if l > 0 {
|
||
|
fn := e.kSeqFn(ti.elem)
|
||
|
for j := 0; j < l; j++ {
|
||
|
e.arrayElem()
|
||
|
e.encodeValue(rv.Index(j), fn)
|
||
|
}
|
||
|
}
|
||
|
e.arrayEnd()
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kChan(f *codecFnInfo, rv reflect.Value) {
|
||
|
if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
|
||
|
e.errorf("send-only channel cannot be encoded")
|
||
|
}
|
||
|
if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
|
||
|
e.kSliceBytesChan(rv)
|
||
|
return
|
||
|
}
|
||
|
rtslice := reflect.SliceOf(f.ti.elem)
|
||
|
rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
|
||
|
ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
|
||
|
if f.ti.mbs {
|
||
|
e.kSliceWMbs(rv, ti)
|
||
|
} else {
|
||
|
e.kSliceW(rv, ti)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
|
||
|
if f.ti.mbs {
|
||
|
e.kSliceWMbs(rv, f.ti)
|
||
|
} else if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
|
||
|
e.e.EncodeStringBytesRaw(rvGetBytes(rv))
|
||
|
} else {
|
||
|
e.kSliceW(rv, f.ti)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kArray(f *codecFnInfo, rv reflect.Value) {
|
||
|
if f.ti.mbs {
|
||
|
e.kArrayWMbs(rv, f.ti)
|
||
|
} else if uint8TypId == rt2id(f.ti.elem) {
|
||
|
e.e.EncodeStringBytesRaw(rvGetArrayBytesRO(rv, e.b[:]))
|
||
|
} else {
|
||
|
e.kArrayW(rv, f.ti)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
|
||
|
// do not use range, so that the number of elements encoded
|
||
|
// does not change, and encoding does not hang waiting on someone to close chan.
|
||
|
|
||
|
// for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
|
||
|
// ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
|
||
|
|
||
|
bs := e.b[:0]
|
||
|
irv := rv2i(rv)
|
||
|
ch, ok := irv.(<-chan byte)
|
||
|
if !ok {
|
||
|
ch = irv.(chan byte)
|
||
|
}
|
||
|
|
||
|
L1:
|
||
|
switch timeout := e.h.ChanRecvTimeout; {
|
||
|
case timeout == 0: // only consume available
|
||
|
for {
|
||
|
select {
|
||
|
case b := <-ch:
|
||
|
bs = append(bs, b)
|
||
|
default:
|
||
|
break L1
|
||
|
}
|
||
|
}
|
||
|
case timeout > 0: // consume until timeout
|
||
|
tt := time.NewTimer(timeout)
|
||
|
for {
|
||
|
select {
|
||
|
case b := <-ch:
|
||
|
bs = append(bs, b)
|
||
|
case <-tt.C:
|
||
|
// close(tt.C)
|
||
|
break L1
|
||
|
}
|
||
|
}
|
||
|
default: // consume until close
|
||
|
for b := range ch {
|
||
|
bs = append(bs, b)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
e.e.EncodeStringBytesRaw(bs)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kStructSfi(f *codecFnInfo) []*structFieldInfo {
|
||
|
if e.h.Canonical {
|
||
|
return f.ti.sfiSort
|
||
|
}
|
||
|
return f.ti.sfiSrc
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
|
||
|
if f.ti.toArray || e.h.StructToArray { // toArray
|
||
|
e.arrayStart(len(f.ti.sfiSrc))
|
||
|
for _, si := range f.ti.sfiSrc {
|
||
|
e.arrayElem()
|
||
|
e.encodeValue(si.path.field(rv), nil)
|
||
|
}
|
||
|
e.arrayEnd()
|
||
|
} else {
|
||
|
tisfi := e.kStructSfi(f)
|
||
|
e.mapStart(len(tisfi))
|
||
|
for _, si := range tisfi {
|
||
|
e.mapElemKey()
|
||
|
e.kStructFieldKey(f.ti.keyType, si.path.encNameAsciiAlphaNum, si.encName)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(si.path.field(rv), nil)
|
||
|
}
|
||
|
e.mapEnd()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
|
||
|
encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
|
||
|
var newlen int
|
||
|
toMap := !(f.ti.toArray || e.h.StructToArray)
|
||
|
var mf map[string]interface{}
|
||
|
if f.ti.flagMissingFielder {
|
||
|
mf = rv2i(rv).(MissingFielder).CodecMissingFields()
|
||
|
toMap = true
|
||
|
newlen += len(mf)
|
||
|
} else if f.ti.flagMissingFielderPtr {
|
||
|
if rv.CanAddr() {
|
||
|
mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
|
||
|
} else {
|
||
|
// make a new addressable value of same one, and use it
|
||
|
rv2 := reflect.New(rvType(rv))
|
||
|
rvSetDirect(rv2.Elem(), rv)
|
||
|
mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
|
||
|
}
|
||
|
toMap = true
|
||
|
newlen += len(mf)
|
||
|
}
|
||
|
newlen += len(f.ti.sfiSrc)
|
||
|
|
||
|
var fkvs = e.slist.get(newlen)[:newlen]
|
||
|
|
||
|
recur := e.h.RecursiveEmptyCheck
|
||
|
|
||
|
var kv sfiRv
|
||
|
var j int
|
||
|
if toMap {
|
||
|
newlen = 0
|
||
|
for _, si := range e.kStructSfi(f) {
|
||
|
kv.r = si.path.field(rv)
|
||
|
if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
|
||
|
continue
|
||
|
}
|
||
|
kv.v = si
|
||
|
fkvs[newlen] = kv
|
||
|
newlen++
|
||
|
}
|
||
|
var mflen int
|
||
|
for k, v := range mf {
|
||
|
if k == "" {
|
||
|
delete(mf, k)
|
||
|
continue
|
||
|
}
|
||
|
if f.ti.infoFieldOmitempty && isEmptyValue(rv4i(v), e.h.TypeInfos, recur) {
|
||
|
delete(mf, k)
|
||
|
continue
|
||
|
}
|
||
|
mflen++
|
||
|
}
|
||
|
// encode it all
|
||
|
e.mapStart(newlen + mflen)
|
||
|
for j = 0; j < newlen; j++ {
|
||
|
kv = fkvs[j]
|
||
|
e.mapElemKey()
|
||
|
e.kStructFieldKey(f.ti.keyType, kv.v.path.encNameAsciiAlphaNum, kv.v.encName)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(kv.r, nil)
|
||
|
}
|
||
|
// now, add the others
|
||
|
for k, v := range mf {
|
||
|
e.mapElemKey()
|
||
|
e.kStructFieldKey(f.ti.keyType, false, k)
|
||
|
e.mapElemValue()
|
||
|
e.encode(v)
|
||
|
}
|
||
|
e.mapEnd()
|
||
|
} else {
|
||
|
newlen = len(f.ti.sfiSrc)
|
||
|
for i, si := range f.ti.sfiSrc { // use unsorted array (to match sequence in struct)
|
||
|
kv.r = si.path.field(rv)
|
||
|
// use the zero value.
|
||
|
// if a reference or struct, set to nil (so you do not output too much)
|
||
|
if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
|
||
|
switch kv.r.Kind() {
|
||
|
case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
|
||
|
kv.r = reflect.Value{} //encode as nil
|
||
|
}
|
||
|
}
|
||
|
fkvs[i] = kv
|
||
|
}
|
||
|
// encode it all
|
||
|
e.arrayStart(newlen)
|
||
|
for j = 0; j < newlen; j++ {
|
||
|
e.arrayElem()
|
||
|
e.encodeValue(fkvs[j].r, nil)
|
||
|
}
|
||
|
e.arrayEnd()
|
||
|
}
|
||
|
|
||
|
// do not use defer. Instead, use explicit pool return at end of function.
|
||
|
// defer has a cost we are trying to avoid.
|
||
|
// If there is a panic and these slices are not returned, it is ok.
|
||
|
e.slist.put(fkvs)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
|
||
|
l := rvLenMap(rv)
|
||
|
e.mapStart(l)
|
||
|
if l == 0 {
|
||
|
e.mapEnd()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// determine the underlying key and val encFn's for the map.
|
||
|
// This eliminates some work which is done for each loop iteration i.e.
|
||
|
// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
|
||
|
//
|
||
|
// However, if kind is reflect.Interface, do not pre-determine the
|
||
|
// encoding type, because preEncodeValue may break it down to
|
||
|
// a concrete type and kInterface will bomb.
|
||
|
|
||
|
var keyFn, valFn *codecFn
|
||
|
|
||
|
ktypeKind := f.ti.key.Kind()
|
||
|
vtypeKind := f.ti.elem.Kind()
|
||
|
|
||
|
rtval := f.ti.elem
|
||
|
rtvalkind := vtypeKind
|
||
|
for rtvalkind == reflect.Ptr {
|
||
|
rtval = rtval.Elem()
|
||
|
rtvalkind = rtval.Kind()
|
||
|
}
|
||
|
if rtvalkind != reflect.Interface {
|
||
|
valFn = e.h.fn(rtval)
|
||
|
}
|
||
|
|
||
|
var rvv = mapAddrLoopvarRV(f.ti.elem, vtypeKind)
|
||
|
|
||
|
if e.h.Canonical {
|
||
|
e.kMapCanonical(f.ti.key, f.ti.elem, rv, rvv, valFn)
|
||
|
e.mapEnd()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
rtkey := f.ti.key
|
||
|
var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
|
||
|
if !keyTypeIsString {
|
||
|
for rtkey.Kind() == reflect.Ptr {
|
||
|
rtkey = rtkey.Elem()
|
||
|
}
|
||
|
if rtkey.Kind() != reflect.Interface {
|
||
|
keyFn = e.h.fn(rtkey)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
var rvk = mapAddrLoopvarRV(f.ti.key, ktypeKind)
|
||
|
|
||
|
var it mapIter
|
||
|
mapRange(&it, rv, rvk, rvv, true)
|
||
|
|
||
|
for it.Next() {
|
||
|
e.mapElemKey()
|
||
|
if keyTypeIsString {
|
||
|
e.e.EncodeString(it.Key().String())
|
||
|
} else {
|
||
|
e.encodeValue(it.Key(), keyFn)
|
||
|
}
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(it.Value(), valFn)
|
||
|
}
|
||
|
it.Done()
|
||
|
|
||
|
e.mapEnd()
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) kMapCanonical(rtkey, rtval reflect.Type, rv, rvv reflect.Value, valFn *codecFn) {
|
||
|
// we previously did out-of-band if an extension was registered.
|
||
|
// This is not necessary, as the natural kind is sufficient for ordering.
|
||
|
|
||
|
mks := rv.MapKeys()
|
||
|
switch rtkey.Kind() {
|
||
|
case reflect.Bool:
|
||
|
mksv := make([]boolRv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksv[i]
|
||
|
v.r = k
|
||
|
v.v = k.Bool()
|
||
|
}
|
||
|
sort.Sort(boolRvSlice(mksv))
|
||
|
for i := range mksv {
|
||
|
e.mapElemKey()
|
||
|
e.e.EncodeBool(mksv[i].v)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
|
||
|
}
|
||
|
case reflect.String:
|
||
|
mksv := make([]stringRv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksv[i]
|
||
|
v.r = k
|
||
|
v.v = k.String()
|
||
|
}
|
||
|
sort.Sort(stringRvSlice(mksv))
|
||
|
for i := range mksv {
|
||
|
e.mapElemKey()
|
||
|
e.e.EncodeString(mksv[i].v)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
|
||
|
}
|
||
|
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
|
||
|
mksv := make([]uint64Rv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksv[i]
|
||
|
v.r = k
|
||
|
v.v = k.Uint()
|
||
|
}
|
||
|
sort.Sort(uint64RvSlice(mksv))
|
||
|
for i := range mksv {
|
||
|
e.mapElemKey()
|
||
|
e.e.EncodeUint(mksv[i].v)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
|
||
|
}
|
||
|
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
||
|
mksv := make([]int64Rv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksv[i]
|
||
|
v.r = k
|
||
|
v.v = k.Int()
|
||
|
}
|
||
|
sort.Sort(int64RvSlice(mksv))
|
||
|
for i := range mksv {
|
||
|
e.mapElemKey()
|
||
|
e.e.EncodeInt(mksv[i].v)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
|
||
|
}
|
||
|
case reflect.Float32:
|
||
|
mksv := make([]float64Rv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksv[i]
|
||
|
v.r = k
|
||
|
v.v = k.Float()
|
||
|
}
|
||
|
sort.Sort(float64RvSlice(mksv))
|
||
|
for i := range mksv {
|
||
|
e.mapElemKey()
|
||
|
e.e.EncodeFloat32(float32(mksv[i].v))
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
|
||
|
}
|
||
|
case reflect.Float64:
|
||
|
mksv := make([]float64Rv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksv[i]
|
||
|
v.r = k
|
||
|
v.v = k.Float()
|
||
|
}
|
||
|
sort.Sort(float64RvSlice(mksv))
|
||
|
for i := range mksv {
|
||
|
e.mapElemKey()
|
||
|
e.e.EncodeFloat64(mksv[i].v)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
|
||
|
}
|
||
|
case reflect.Struct:
|
||
|
if rtkey == timeTyp {
|
||
|
mksv := make([]timeRv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksv[i]
|
||
|
v.r = k
|
||
|
v.v = rv2i(k).(time.Time)
|
||
|
}
|
||
|
sort.Sort(timeRvSlice(mksv))
|
||
|
for i := range mksv {
|
||
|
e.mapElemKey()
|
||
|
e.e.EncodeTime(mksv[i].v)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv), valFn)
|
||
|
}
|
||
|
break
|
||
|
}
|
||
|
fallthrough
|
||
|
default:
|
||
|
// out-of-band
|
||
|
// first encode each key to a []byte first, then sort them, then record
|
||
|
var mksv = e.blist.get(len(mks) * 16)
|
||
|
e2 := NewEncoderBytes(&mksv, e.hh)
|
||
|
mksbv := make([]bytesRv, len(mks))
|
||
|
for i, k := range mks {
|
||
|
v := &mksbv[i]
|
||
|
l := len(mksv)
|
||
|
e2.MustEncode(k)
|
||
|
v.r = k
|
||
|
v.v = mksv[l:]
|
||
|
}
|
||
|
sort.Sort(bytesRvSlice(mksbv))
|
||
|
for j := range mksbv {
|
||
|
e.mapElemKey()
|
||
|
e.encWr.writeb(mksbv[j].v)
|
||
|
e.mapElemValue()
|
||
|
e.encodeValue(mapGet(rv, mksbv[j].r, rvv), valFn)
|
||
|
}
|
||
|
e.blist.put(mksv)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Encoder writes an object to an output stream in a supported format.
|
||
|
//
|
||
|
// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
|
||
|
// concurrently in multiple goroutines.
|
||
|
//
|
||
|
// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
|
||
|
// so its state can be reused to decode new input streams repeatedly.
|
||
|
// This is the idiomatic way to use.
|
||
|
type Encoder struct {
|
||
|
panicHdl
|
||
|
|
||
|
e encDriver
|
||
|
|
||
|
h *BasicHandle
|
||
|
|
||
|
// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
|
||
|
encWr
|
||
|
|
||
|
// ---- cpu cache line boundary
|
||
|
hh Handle
|
||
|
|
||
|
blist bytesFreelist
|
||
|
err error
|
||
|
|
||
|
// ---- cpu cache line boundary
|
||
|
|
||
|
// ---- writable fields during execution --- *try* to keep in sep cache line
|
||
|
|
||
|
// ci holds interfaces during an encoding (if CheckCircularRef=true)
|
||
|
//
|
||
|
// We considered using a []uintptr (slice of pointer addresses) retrievable via rv.UnsafeAddr.
|
||
|
// However, it is possible for the same pointer to point to 2 different types e.g.
|
||
|
// type T struct { tHelper }
|
||
|
// Here, for var v T; &v and &v.tHelper are the same pointer.
|
||
|
// Consequently, we need a tuple of type and pointer, which interface{} natively provides.
|
||
|
ci []interface{} // []uintptr
|
||
|
|
||
|
slist sfiRvFreelist
|
||
|
|
||
|
b [2 * 8]byte // for encoding chan byte, (non-addressable) [N]byte, etc
|
||
|
|
||
|
// ---- cpu cache line boundary?
|
||
|
}
|
||
|
|
||
|
// NewEncoder returns an Encoder for encoding into an io.Writer.
|
||
|
//
|
||
|
// For efficiency, Users are encouraged to configure WriterBufferSize on the handle
|
||
|
// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
|
||
|
func NewEncoder(w io.Writer, h Handle) *Encoder {
|
||
|
e := h.newEncDriver().encoder()
|
||
|
e.Reset(w)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
// NewEncoderBytes returns an encoder for encoding directly and efficiently
|
||
|
// into a byte slice, using zero-copying to temporary slices.
|
||
|
//
|
||
|
// It will potentially replace the output byte slice pointed to.
|
||
|
// After encoding, the out parameter contains the encoded contents.
|
||
|
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
|
||
|
e := h.newEncDriver().encoder()
|
||
|
e.ResetBytes(out)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) init(h Handle) {
|
||
|
initHandle(h)
|
||
|
e.err = errEncoderNotInitialized
|
||
|
e.bytes = true
|
||
|
e.hh = h
|
||
|
e.h = h.getBasicHandle()
|
||
|
e.be = e.hh.isBinary()
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) w() *encWr {
|
||
|
return &e.encWr
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) resetCommon() {
|
||
|
e.e.reset()
|
||
|
if e.ci != nil {
|
||
|
e.ci = e.ci[:0]
|
||
|
}
|
||
|
e.c = 0
|
||
|
e.calls = 0
|
||
|
e.err = nil
|
||
|
}
|
||
|
|
||
|
// Reset resets the Encoder with a new output stream.
|
||
|
//
|
||
|
// This accommodates using the state of the Encoder,
|
||
|
// where it has "cached" information about sub-engines.
|
||
|
func (e *Encoder) Reset(w io.Writer) {
|
||
|
if w == nil {
|
||
|
return
|
||
|
}
|
||
|
e.bytes = false
|
||
|
if e.wf == nil {
|
||
|
e.wf = new(bufioEncWriter)
|
||
|
}
|
||
|
e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
|
||
|
e.resetCommon()
|
||
|
}
|
||
|
|
||
|
// ResetBytes resets the Encoder with a new destination output []byte.
|
||
|
func (e *Encoder) ResetBytes(out *[]byte) {
|
||
|
if out == nil {
|
||
|
return
|
||
|
}
|
||
|
var in []byte = *out
|
||
|
if in == nil {
|
||
|
in = make([]byte, defEncByteBufSize)
|
||
|
}
|
||
|
e.bytes = true
|
||
|
e.wb.reset(in, out)
|
||
|
e.resetCommon()
|
||
|
}
|
||
|
|
||
|
// Encode writes an object into a stream.
|
||
|
//
|
||
|
// Encoding can be configured via the struct tag for the fields.
|
||
|
// The key (in the struct tags) that we look at is configurable.
|
||
|
//
|
||
|
// By default, we look up the "codec" key in the struct field's tags,
|
||
|
// and fall bak to the "json" key if "codec" is absent.
|
||
|
// That key in struct field's tag value is the key name,
|
||
|
// followed by an optional comma and options.
|
||
|
//
|
||
|
// To set an option on all fields (e.g. omitempty on all fields), you
|
||
|
// can create a field called _struct, and set flags on it. The options
|
||
|
// which can be set on _struct are:
|
||
|
// - omitempty: so all fields are omitted if empty
|
||
|
// - toarray: so struct is encoded as an array
|
||
|
// - int: so struct key names are encoded as signed integers (instead of strings)
|
||
|
// - uint: so struct key names are encoded as unsigned integers (instead of strings)
|
||
|
// - float: so struct key names are encoded as floats (instead of strings)
|
||
|
// More details on these below.
|
||
|
//
|
||
|
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
|
||
|
// - the field's tag is "-", OR
|
||
|
// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
|
||
|
//
|
||
|
// When encoding as a map, the first string in the tag (before the comma)
|
||
|
// is the map key string to use when encoding.
|
||
|
// ...
|
||
|
// This key is typically encoded as a string.
|
||
|
// However, there are instances where the encoded stream has mapping keys encoded as numbers.
|
||
|
// For example, some cbor streams have keys as integer codes in the stream, but they should map
|
||
|
// to fields in a structured object. Consequently, a struct is the natural representation in code.
|
||
|
// For these, configure the struct to encode/decode the keys as numbers (instead of string).
|
||
|
// This is done with the int,uint or float option on the _struct field (see above).
|
||
|
//
|
||
|
// However, struct values may encode as arrays. This happens when:
|
||
|
// - StructToArray Encode option is set, OR
|
||
|
// - the tag on the _struct field sets the "toarray" option
|
||
|
// Note that omitempty is ignored when encoding struct values as arrays,
|
||
|
// as an entry must be encoded for each field, to maintain its position.
|
||
|
//
|
||
|
// Values with types that implement MapBySlice are encoded as stream maps.
|
||
|
//
|
||
|
// The empty values (for omitempty option) are false, 0, any nil pointer
|
||
|
// or interface value, and any array, slice, map, or string of length zero.
|
||
|
//
|
||
|
// Anonymous fields are encoded inline except:
|
||
|
// - the struct tag specifies a replacement name (first value)
|
||
|
// - the field is of an interface type
|
||
|
//
|
||
|
// Examples:
|
||
|
//
|
||
|
// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
|
||
|
// type MyStruct struct {
|
||
|
// _struct bool `codec:",omitempty"` //set omitempty for every field
|
||
|
// Field1 string `codec:"-"` //skip this field
|
||
|
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
|
||
|
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
|
||
|
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
|
||
|
// io.Reader //use key "Reader".
|
||
|
// MyStruct `codec:"my1" //use key "my1".
|
||
|
// MyStruct //inline it
|
||
|
// ...
|
||
|
// }
|
||
|
//
|
||
|
// type MyStruct struct {
|
||
|
// _struct bool `codec:",toarray"` //encode struct as an array
|
||
|
// }
|
||
|
//
|
||
|
// type MyStruct struct {
|
||
|
// _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
|
||
|
// Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
|
||
|
// Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
|
||
|
// }
|
||
|
//
|
||
|
// The mode of encoding is based on the type of the value. When a value is seen:
|
||
|
// - If a Selfer, call its CodecEncodeSelf method
|
||
|
// - If an extension is registered for it, call that extension function
|
||
|
// - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
|
||
|
// - Else encode it based on its reflect.Kind
|
||
|
//
|
||
|
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
|
||
|
// Some formats support symbols (e.g. binc) and will properly encode the string
|
||
|
// only once in the stream, and use a tag to refer to it thereafter.
|
||
|
func (e *Encoder) Encode(v interface{}) (err error) {
|
||
|
// tried to use closure, as runtime optimizes defer with no params.
|
||
|
// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
|
||
|
// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
|
||
|
defer func() {
|
||
|
// if error occurred during encoding, return that error;
|
||
|
// else if error occurred on end'ing (i.e. during flush), return that error.
|
||
|
if x := recover(); x != nil {
|
||
|
panicValToErr(e, x, &e.err)
|
||
|
err = e.err
|
||
|
}
|
||
|
}()
|
||
|
|
||
|
e.MustEncode(v)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// MustEncode is like Encode, but panics if unable to Encode.
|
||
|
//
|
||
|
// Note: This provides insight to the code location that triggered the error.
|
||
|
func (e *Encoder) MustEncode(v interface{}) {
|
||
|
halt.onerror(e.err)
|
||
|
if e.hh == nil {
|
||
|
halt.onerror(errNoFormatHandle)
|
||
|
}
|
||
|
|
||
|
e.calls++
|
||
|
e.encode(v)
|
||
|
e.calls--
|
||
|
if e.calls == 0 {
|
||
|
e.e.atEndOfEncode()
|
||
|
e.w().end()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Release releases shared (pooled) resources.
|
||
|
//
|
||
|
// It is important to call Release() when done with an Encoder, so those resources
|
||
|
// are released instantly for use by subsequently created Encoders.
|
||
|
//
|
||
|
// Deprecated: Release is a no-op as pooled resources are not used with an Encoder.
|
||
|
// This method is kept for compatibility reasons only.
|
||
|
func (e *Encoder) Release() {
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) encode(iv interface{}) {
|
||
|
// MARKER: a switch with only concrete types can be optimized.
|
||
|
// consequently, we deal with nil and interfaces outside the switch.
|
||
|
|
||
|
if iv == nil {
|
||
|
e.e.EncodeNil()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
rv, ok := isNil(iv)
|
||
|
if ok {
|
||
|
e.e.EncodeNil()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
switch v := iv.(type) {
|
||
|
// case nil:
|
||
|
// case Selfer:
|
||
|
case Raw:
|
||
|
e.rawBytes(v)
|
||
|
case reflect.Value:
|
||
|
e.encodeValue(v, nil)
|
||
|
|
||
|
case string:
|
||
|
e.e.EncodeString(v)
|
||
|
case bool:
|
||
|
e.e.EncodeBool(v)
|
||
|
case int:
|
||
|
e.e.EncodeInt(int64(v))
|
||
|
case int8:
|
||
|
e.e.EncodeInt(int64(v))
|
||
|
case int16:
|
||
|
e.e.EncodeInt(int64(v))
|
||
|
case int32:
|
||
|
e.e.EncodeInt(int64(v))
|
||
|
case int64:
|
||
|
e.e.EncodeInt(v)
|
||
|
case uint:
|
||
|
e.e.EncodeUint(uint64(v))
|
||
|
case uint8:
|
||
|
e.e.EncodeUint(uint64(v))
|
||
|
case uint16:
|
||
|
e.e.EncodeUint(uint64(v))
|
||
|
case uint32:
|
||
|
e.e.EncodeUint(uint64(v))
|
||
|
case uint64:
|
||
|
e.e.EncodeUint(v)
|
||
|
case uintptr:
|
||
|
e.e.EncodeUint(uint64(v))
|
||
|
case float32:
|
||
|
e.e.EncodeFloat32(v)
|
||
|
case float64:
|
||
|
e.e.EncodeFloat64(v)
|
||
|
case time.Time:
|
||
|
e.e.EncodeTime(v)
|
||
|
case []byte:
|
||
|
e.e.EncodeStringBytesRaw(v)
|
||
|
case *Raw:
|
||
|
e.rawBytes(*v)
|
||
|
case *string:
|
||
|
e.e.EncodeString(*v)
|
||
|
case *bool:
|
||
|
e.e.EncodeBool(*v)
|
||
|
case *int:
|
||
|
e.e.EncodeInt(int64(*v))
|
||
|
case *int8:
|
||
|
e.e.EncodeInt(int64(*v))
|
||
|
case *int16:
|
||
|
e.e.EncodeInt(int64(*v))
|
||
|
case *int32:
|
||
|
e.e.EncodeInt(int64(*v))
|
||
|
case *int64:
|
||
|
e.e.EncodeInt(*v)
|
||
|
case *uint:
|
||
|
e.e.EncodeUint(uint64(*v))
|
||
|
case *uint8:
|
||
|
e.e.EncodeUint(uint64(*v))
|
||
|
case *uint16:
|
||
|
e.e.EncodeUint(uint64(*v))
|
||
|
case *uint32:
|
||
|
e.e.EncodeUint(uint64(*v))
|
||
|
case *uint64:
|
||
|
e.e.EncodeUint(*v)
|
||
|
case *uintptr:
|
||
|
e.e.EncodeUint(uint64(*v))
|
||
|
case *float32:
|
||
|
e.e.EncodeFloat32(*v)
|
||
|
case *float64:
|
||
|
e.e.EncodeFloat64(*v)
|
||
|
case *time.Time:
|
||
|
e.e.EncodeTime(*v)
|
||
|
case *[]byte:
|
||
|
if *v == nil {
|
||
|
e.e.EncodeNil()
|
||
|
} else {
|
||
|
e.e.EncodeStringBytesRaw(*v)
|
||
|
}
|
||
|
default:
|
||
|
// we can't check non-predefined types, as they might be a Selfer or extension.
|
||
|
if skipFastpathTypeSwitchInDirectCall || !fastpathEncodeTypeSwitch(iv, e) {
|
||
|
e.encodeValue(rv, nil)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// encodeValue will encode a value.
|
||
|
//
|
||
|
// Note that encodeValue will handle nil in the stream early, so that the
|
||
|
// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
|
||
|
func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
|
||
|
// if a valid fn is passed, it MUST BE for the dereferenced type of rv
|
||
|
|
||
|
// MARKER: We check if value is nil here, so that the kXXX method do not have to.
|
||
|
|
||
|
var sptr interface{}
|
||
|
var rvp reflect.Value
|
||
|
var rvpValid bool
|
||
|
TOP:
|
||
|
switch rv.Kind() {
|
||
|
case reflect.Ptr:
|
||
|
if rvIsNil(rv) {
|
||
|
e.e.EncodeNil()
|
||
|
return
|
||
|
}
|
||
|
rvpValid = true
|
||
|
rvp = rv
|
||
|
rv = rv.Elem()
|
||
|
if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
|
||
|
// sptr = rvAddr(rv) // use rv, not rvp, as rvAddr gives ptr to the data rv
|
||
|
sptr = rv2i(rvp)
|
||
|
for _, vv := range e.ci {
|
||
|
if eq4i(sptr, vv) { // error if sptr already seen
|
||
|
e.errorf("circular reference found: %p, %T", sptr, sptr)
|
||
|
}
|
||
|
}
|
||
|
e.ci = append(e.ci, sptr)
|
||
|
break TOP
|
||
|
}
|
||
|
goto TOP
|
||
|
case reflect.Interface:
|
||
|
if rvIsNil(rv) {
|
||
|
e.e.EncodeNil()
|
||
|
return
|
||
|
}
|
||
|
rv = rv.Elem()
|
||
|
goto TOP
|
||
|
case reflect.Slice, reflect.Map, reflect.Chan:
|
||
|
if rvIsNil(rv) {
|
||
|
e.e.EncodeNil()
|
||
|
return
|
||
|
}
|
||
|
case reflect.Invalid, reflect.Func:
|
||
|
e.e.EncodeNil()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
var rt reflect.Type
|
||
|
if fn == nil {
|
||
|
rt = rvType(rv)
|
||
|
fn = e.h.fn(rt)
|
||
|
}
|
||
|
|
||
|
if !fn.i.addrE { // typically, addrE = false, so check it first
|
||
|
fn.fe(e, &fn.i, rv)
|
||
|
} else if rvpValid {
|
||
|
fn.fe(e, &fn.i, rvp)
|
||
|
} else if rv.CanAddr() {
|
||
|
fn.fe(e, &fn.i, rv.Addr())
|
||
|
} else if fn.i.addrEf {
|
||
|
if rt == nil {
|
||
|
rt = rvType(rv)
|
||
|
}
|
||
|
rv2 := rvZeroAddrK(rt, rv.Kind())
|
||
|
rvSetDirect(rv2, rv)
|
||
|
fn.fe(e, &fn.i, rv2.Addr())
|
||
|
} else {
|
||
|
fn.fe(e, &fn.i, rv)
|
||
|
}
|
||
|
|
||
|
if sptr != nil { // remove sptr
|
||
|
e.ci = e.ci[:len(e.ci)-1]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
|
||
|
e.onerror(fnerr)
|
||
|
if bs == nil {
|
||
|
e.e.EncodeNil()
|
||
|
} else {
|
||
|
e.e.EncodeString(stringView(bs))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
|
||
|
e.onerror(fnerr)
|
||
|
if bs == nil {
|
||
|
e.e.EncodeNil()
|
||
|
} else {
|
||
|
e.encWr.writeb(bs) // e.asis(bs)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
|
||
|
e.onerror(fnerr)
|
||
|
if bs == nil {
|
||
|
e.e.EncodeNil()
|
||
|
} else {
|
||
|
e.e.EncodeStringBytesRaw(bs)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) rawBytes(vv Raw) {
|
||
|
v := []byte(vv)
|
||
|
if !e.h.Raw {
|
||
|
e.errorf("Raw values cannot be encoded: %v", v)
|
||
|
}
|
||
|
e.encWr.writeb(v)
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) wrapErr(v error, err *error) {
|
||
|
*err = wrapCodecErr(v, e.hh.Name(), 0, true)
|
||
|
}
|
||
|
|
||
|
// ---- container tracker methods
|
||
|
// Note: We update the .c after calling the callback.
|
||
|
// This way, the callback can know what the last status was.
|
||
|
|
||
|
func (e *Encoder) mapStart(length int) {
|
||
|
e.e.WriteMapStart(length)
|
||
|
e.c = containerMapStart
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) mapElemKey() {
|
||
|
if e.js {
|
||
|
e.jsondriver().WriteMapElemKey()
|
||
|
}
|
||
|
e.c = containerMapKey
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) mapElemValue() {
|
||
|
if e.js {
|
||
|
e.jsondriver().WriteMapElemValue()
|
||
|
}
|
||
|
e.c = containerMapValue
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) mapEnd() {
|
||
|
e.e.WriteMapEnd()
|
||
|
e.c = 0
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) arrayStart(length int) {
|
||
|
e.e.WriteArrayStart(length)
|
||
|
e.c = containerArrayStart
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) arrayElem() {
|
||
|
if e.js {
|
||
|
e.jsondriver().WriteArrayElem()
|
||
|
}
|
||
|
e.c = containerArrayElem
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) arrayEnd() {
|
||
|
e.e.WriteArrayEnd()
|
||
|
e.c = 0
|
||
|
}
|
||
|
|
||
|
// ----------
|
||
|
|
||
|
func (e *Encoder) haltOnMbsOddLen(length int) {
|
||
|
if length&1 != 0 { // similar to &1==1 or %2 == 1
|
||
|
e.errorf("mapBySlice requires even slice length, but got %v", length)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *Encoder) sideEncode(v interface{}, bs *[]byte) {
|
||
|
rv := baseRV(v)
|
||
|
e2 := NewEncoderBytes(bs, e.hh)
|
||
|
e2.encodeValue(rv, e.h.fnNoExt(rvType(rv)))
|
||
|
e2.e.atEndOfEncode()
|
||
|
e2.w().end()
|
||
|
}
|
||
|
|
||
|
func encStructFieldKey(encName string, ee encDriver, w *encWr,
|
||
|
keyType valueType, encNameAsciiAlphaNum bool, js bool) {
|
||
|
// use if-else-if, not switch (which compiles to binary-search)
|
||
|
// since keyType is typically valueTypeString, branch prediction is pretty good.
|
||
|
|
||
|
if keyType == valueTypeString {
|
||
|
if js && encNameAsciiAlphaNum { // keyType == valueTypeString
|
||
|
w.writeqstr(encName)
|
||
|
} else { // keyType == valueTypeString
|
||
|
ee.EncodeString(encName)
|
||
|
}
|
||
|
} else if keyType == valueTypeInt {
|
||
|
ee.EncodeInt(must.Int(strconv.ParseInt(encName, 10, 64)))
|
||
|
} else if keyType == valueTypeUint {
|
||
|
ee.EncodeUint(must.Uint(strconv.ParseUint(encName, 10, 64)))
|
||
|
} else if keyType == valueTypeFloat {
|
||
|
ee.EncodeFloat64(must.Float(strconv.ParseFloat(encName, 64)))
|
||
|
} else {
|
||
|
halt.errorf("invalid struct key type: %v", keyType)
|
||
|
}
|
||
|
}
|