package exif import ( "fmt" "math" "reflect" "strconv" "strings" "time" log "github.com/dsoprea/go-logging" exifcommon "github.com/dsoprea/go-exif/v2/common" exifundefined "github.com/dsoprea/go-exif/v2/undefined" ) var ( utilityLogger = log.NewLogger("exif.utility") ) var ( timeType = reflect.TypeOf(time.Time{}) ) // ParseExifFullTimestamp parses dates like "2018:11:30 13:01:49" into a UTC // `time.Time` struct. func ParseExifFullTimestamp(fullTimestampPhrase string) (timestamp time.Time, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() parts := strings.Split(fullTimestampPhrase, " ") datestampValue, timestampValue := parts[0], parts[1] // Normalize the separators. datestampValue = strings.ReplaceAll(datestampValue, "-", ":") timestampValue = strings.ReplaceAll(timestampValue, "-", ":") dateParts := strings.Split(datestampValue, ":") year, err := strconv.ParseUint(dateParts[0], 10, 16) if err != nil { log.Panicf("could not parse year") } month, err := strconv.ParseUint(dateParts[1], 10, 8) if err != nil { log.Panicf("could not parse month") } day, err := strconv.ParseUint(dateParts[2], 10, 8) if err != nil { log.Panicf("could not parse day") } timeParts := strings.Split(timestampValue, ":") hour, err := strconv.ParseUint(timeParts[0], 10, 8) if err != nil { log.Panicf("could not parse hour") } minute, err := strconv.ParseUint(timeParts[1], 10, 8) if err != nil { log.Panicf("could not parse minute") } second, err := strconv.ParseUint(timeParts[2], 10, 8) if err != nil { log.Panicf("could not parse second") } timestamp = time.Date(int(year), time.Month(month), int(day), int(hour), int(minute), int(second), 0, time.UTC) return timestamp, nil } // ExifFullTimestampString produces a string like "2018:11:30 13:01:49" from a // `time.Time` struct. It will attempt to convert to UTC first. func ExifFullTimestampString(t time.Time) (fullTimestampPhrase string) { return exifcommon.ExifFullTimestampString(t) } // ExifTag is one simple representation of a tag in a flat list of all of them. type ExifTag struct { // IfdPath is the fully-qualified IFD path (even though it is not named as // such). IfdPath string `json:"ifd_path"` // TagId is the tag-ID. TagId uint16 `json:"id"` // TagName is the tag-name. This is never empty. TagName string `json:"name"` // UnitCount is the recorded number of units constution of the value. UnitCount uint32 `json:"unit_count"` // TagTypeId is the type-ID. TagTypeId exifcommon.TagTypePrimitive `json:"type_id"` // TagTypeName is the type name. TagTypeName string `json:"type_name"` // Value is the decoded value. Value interface{} `json:"value"` // ValueBytes is the raw, encoded value. ValueBytes []byte `json:"value_bytes"` // Formatted is the human representation of the first value (tag values are // always an array). FormattedFirst string `json:"formatted_first"` // Formatted is the human representation of the complete value. Formatted string `json:"formatted"` // ChildIfdPath is the name of the child IFD this tag represents (if it // represents any). Otherwise, this is empty. ChildIfdPath string `json:"child_ifd_path"` } // String returns a string representation. func (et ExifTag) String() string { return fmt.Sprintf( "ExifTag<"+ "IFD-PATH=[%s] "+ "TAG-ID=(0x%02x) "+ "TAG-NAME=[%s] "+ "TAG-TYPE=[%s] "+ "VALUE=[%v] "+ "VALUE-BYTES=(%d) "+ "CHILD-IFD-PATH=[%s]", et.IfdPath, et.TagId, et.TagName, et.TagTypeName, et.FormattedFirst, len(et.ValueBytes), et.ChildIfdPath) } // GetFlatExifData returns a simple, flat representation of all tags. func GetFlatExifData(exifData []byte) (exifTags []ExifTag, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() eh, err := ParseExifHeader(exifData) log.PanicIf(err) im := NewIfdMappingWithStandard() ti := NewTagIndex() ie := NewIfdEnumerate(im, ti, exifData, eh.ByteOrder) exifTags = make([]ExifTag, 0) visitor := func(fqIfdPath string, ifdIndex int, ite *IfdTagEntry) (err error) { // This encodes down to base64. Since this an example tool and we do not // expect to ever decode the output, we are not worried about // specifically base64-encoding it in order to have a measure of // control. valueBytes, err := ite.GetRawBytes() if err != nil { if err == exifundefined.ErrUnparseableValue { return nil } log.Panic(err) } value, err := ite.Value() if err != nil { if err == exifcommon.ErrUnhandledUndefinedTypedTag { value = exifundefined.UnparseableUnknownTagValuePlaceholder } else { log.Panic(err) } } et := ExifTag{ IfdPath: fqIfdPath, TagId: ite.TagId(), TagName: ite.TagName(), UnitCount: ite.UnitCount(), TagTypeId: ite.TagType(), TagTypeName: ite.TagType().String(), Value: value, ValueBytes: valueBytes, ChildIfdPath: ite.ChildIfdPath(), } et.Formatted, err = ite.Format() log.PanicIf(err) et.FormattedFirst, err = ite.FormatFirst() log.PanicIf(err) exifTags = append(exifTags, et) return nil } _, err = ie.Scan(exifcommon.IfdStandardIfdIdentity, eh.FirstIfdOffset, visitor) log.PanicIf(err) return exifTags, nil } // GpsDegreesEquals returns true if the two `GpsDegrees` are identical. func GpsDegreesEquals(gi1, gi2 GpsDegrees) bool { if gi2.Orientation != gi1.Orientation { return false } degreesRightBound := math.Nextafter(gi1.Degrees, gi1.Degrees+1) minutesRightBound := math.Nextafter(gi1.Minutes, gi1.Minutes+1) secondsRightBound := math.Nextafter(gi1.Seconds, gi1.Seconds+1) if gi2.Degrees < gi1.Degrees || gi2.Degrees >= degreesRightBound { return false } else if gi2.Minutes < gi1.Minutes || gi2.Minutes >= minutesRightBound { return false } else if gi2.Seconds < gi1.Seconds || gi2.Seconds >= secondsRightBound { return false } return true } // IsTime returns true if the value is a `time.Time`. func IsTime(v interface{}) bool { return reflect.TypeOf(v) == timeType }