package exifcommon import ( "bytes" "errors" "math" "encoding/binary" "github.com/dsoprea/go-logging" ) var ( parserLogger = log.NewLogger("exifcommon.parser") ) var ( ErrParseFail = errors.New("parse failure") ) // Parser knows how to parse all well-defined, encoded EXIF types. type Parser struct { } // ParseBytesknows how to parse a byte-type value. func (p *Parser) ParseBytes(data []byte, unitCount uint32) (value []uint8, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeByte.Size() * count) { log.Panic(ErrNotEnoughData) } value = []uint8(data[:count]) return value, nil } // ParseAscii returns a string and auto-strips the trailing NUL character that // should be at the end of the encoding. func (p *Parser) ParseAscii(data []byte, unitCount uint32) (value string, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeAscii.Size() * count) { log.Panic(ErrNotEnoughData) } if len(data) == 0 || data[count-1] != 0 { s := string(data[:count]) parserLogger.Warningf(nil, "ascii not terminated with nul as expected: [%v]", s) for _, c := range s { if c > 127 { // Binary return "", ErrParseFail } } return s, nil } // Auto-strip the NUL from the end. It serves no purpose outside of // encoding semantics. return string(data[:count-1]), nil } // ParseAsciiNoNul returns a string without any consideration for a trailing NUL // character. func (p *Parser) ParseAsciiNoNul(data []byte, unitCount uint32) (value string, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeAscii.Size() * count) { log.Panic(ErrNotEnoughData) } return string(data[:count]), nil } // ParseShorts knows how to parse an encoded list of shorts. func (p *Parser) ParseShorts(data []byte, unitCount uint32, byteOrder binary.ByteOrder) (value []uint16, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeShort.Size() * count) { log.Panic(ErrNotEnoughData) } value = make([]uint16, count) for i := 0; i < count; i++ { value[i] = byteOrder.Uint16(data[i*2:]) } return value, nil } // ParseLongs knows how to encode an encoded list of unsigned longs. func (p *Parser) ParseLongs(data []byte, unitCount uint32, byteOrder binary.ByteOrder) (value []uint32, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeLong.Size() * count) { log.Panic(ErrNotEnoughData) } value = make([]uint32, count) for i := 0; i < count; i++ { value[i] = byteOrder.Uint32(data[i*4:]) } return value, nil } // ParseFloats knows how to encode an encoded list of floats. func (p *Parser) ParseFloats(data []byte, unitCount uint32, byteOrder binary.ByteOrder) (value []float32, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() count := int(unitCount) if len(data) != (TypeFloat.Size() * count) { log.Panic(ErrNotEnoughData) } value = make([]float32, count) for i := 0; i < count; i++ { value[i] = math.Float32frombits(byteOrder.Uint32(data[i*4 : (i+1)*4])) } return value, nil } // ParseDoubles knows how to encode an encoded list of doubles. func (p *Parser) ParseDoubles(data []byte, unitCount uint32, byteOrder binary.ByteOrder) (value []float64, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() count := int(unitCount) if len(data) != (TypeDouble.Size() * count) { log.Panic(ErrNotEnoughData) } value = make([]float64, count) for i := 0; i < count; i++ { value[i] = math.Float64frombits(byteOrder.Uint64(data[i*8 : (i+1)*8])) } return value, nil } // ParseRationals knows how to parse an encoded list of unsigned rationals. func (p *Parser) ParseRationals(data []byte, unitCount uint32, byteOrder binary.ByteOrder) (value []Rational, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeRational.Size() * count) { log.Panic(ErrNotEnoughData) } value = make([]Rational, count) for i := 0; i < count; i++ { value[i].Numerator = byteOrder.Uint32(data[i*8:]) value[i].Denominator = byteOrder.Uint32(data[i*8+4:]) } return value, nil } // ParseSignedLongs knows how to parse an encoded list of signed longs. func (p *Parser) ParseSignedLongs(data []byte, unitCount uint32, byteOrder binary.ByteOrder) (value []int32, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeSignedLong.Size() * count) { log.Panic(ErrNotEnoughData) } b := bytes.NewBuffer(data) value = make([]int32, count) for i := 0; i < count; i++ { err := binary.Read(b, byteOrder, &value[i]) log.PanicIf(err) } return value, nil } // ParseSignedRationals knows how to parse an encoded list of signed // rationals. func (p *Parser) ParseSignedRationals(data []byte, unitCount uint32, byteOrder binary.ByteOrder) (value []SignedRational, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // TODO(dustin): Add test count := int(unitCount) if len(data) < (TypeSignedRational.Size() * count) { log.Panic(ErrNotEnoughData) } b := bytes.NewBuffer(data) value = make([]SignedRational, count) for i := 0; i < count; i++ { err = binary.Read(b, byteOrder, &value[i].Numerator) log.PanicIf(err) err = binary.Read(b, byteOrder, &value[i].Denominator) log.PanicIf(err) } return value, nil }