photoprism-client-go/vendor/github.com/dsoprea/go-exif/v2/common/ifd.go

660 lines
16 KiB
Go

package exifcommon
import (
"errors"
"fmt"
"strings"
"github.com/dsoprea/go-logging"
)
var (
ifdLogger = log.NewLogger("exifcommon.ifd")
)
var (
ErrChildIfdNotMapped = errors.New("no child-IFD for that tag-ID under parent")
)
// MappedIfd is one node in the IFD-mapping.
type MappedIfd struct {
ParentTagId uint16
Placement []uint16
Path []string
Name string
TagId uint16
Children map[uint16]*MappedIfd
}
// String returns a descriptive string.
func (mi *MappedIfd) String() string {
pathPhrase := mi.PathPhrase()
return fmt.Sprintf("MappedIfd<(0x%04X) [%s] PATH=[%s]>", mi.TagId, mi.Name, pathPhrase)
}
// PathPhrase returns a non-fully-qualified IFD path.
func (mi *MappedIfd) PathPhrase() string {
return strings.Join(mi.Path, "/")
}
// TODO(dustin): Refactor this to use IfdIdentity structs.
// IfdMapping describes all of the IFDs that we currently recognize.
type IfdMapping struct {
rootNode *MappedIfd
}
// NewIfdMapping returns a new IfdMapping struct.
func NewIfdMapping() (ifdMapping *IfdMapping) {
rootNode := &MappedIfd{
Path: make([]string, 0),
Children: make(map[uint16]*MappedIfd),
}
return &IfdMapping{
rootNode: rootNode,
}
}
// NewIfdMappingWithStandard retruns a new IfdMapping struct preloaded with the
// standard IFDs.
func NewIfdMappingWithStandard() (ifdMapping *IfdMapping) {
defer func() {
if state := recover(); state != nil {
err := log.Wrap(state.(error))
log.Panic(err)
}
}()
im := NewIfdMapping()
err := LoadStandardIfds(im)
log.PanicIf(err)
return im
}
// Get returns the node given the path slice.
func (im *IfdMapping) Get(parentPlacement []uint16) (childIfd *MappedIfd, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
ptr := im.rootNode
for _, tagId := range parentPlacement {
if descendantPtr, found := ptr.Children[tagId]; found == false {
log.Panicf("ifd child with tag-ID (%04x) not registered: [%s]", tagId, ptr.PathPhrase())
} else {
ptr = descendantPtr
}
}
return ptr, nil
}
// GetWithPath returns the node given the path string.
func (im *IfdMapping) GetWithPath(pathPhrase string) (mi *MappedIfd, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if pathPhrase == "" {
log.Panicf("path-phrase is empty")
}
path := strings.Split(pathPhrase, "/")
ptr := im.rootNode
for _, name := range path {
var hit *MappedIfd
for _, mi := range ptr.Children {
if mi.Name == name {
hit = mi
break
}
}
if hit == nil {
log.Panicf("ifd child with name [%s] not registered: [%s]", name, ptr.PathPhrase())
}
ptr = hit
}
return ptr, nil
}
// GetChild is a convenience function to get the child path for a given parent
// placement and child tag-ID.
func (im *IfdMapping) GetChild(parentPathPhrase string, tagId uint16) (mi *MappedIfd, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
mi, err = im.GetWithPath(parentPathPhrase)
log.PanicIf(err)
for _, childMi := range mi.Children {
if childMi.TagId == tagId {
return childMi, nil
}
}
// Whether or not an IFD is defined in data, such an IFD is not registered
// and would be unknown.
log.Panic(ErrChildIfdNotMapped)
return nil, nil
}
// IfdTagIdAndIndex represents a specific part of the IFD path.
//
// This is a legacy type.
type IfdTagIdAndIndex struct {
Name string
TagId uint16
Index int
}
// String returns a descriptive string.
func (itii IfdTagIdAndIndex) String() string {
return fmt.Sprintf("IfdTagIdAndIndex<NAME=[%s] ID=(%04x) INDEX=(%d)>", itii.Name, itii.TagId, itii.Index)
}
// ResolvePath takes a list of names, which can also be suffixed with indices
// (to identify the second, third, etc.. sibling IFD) and returns a list of
// tag-IDs and those indices.
//
// Example:
//
// - IFD/Exif/Iop
// - IFD0/Exif/Iop
//
// This is the only call that supports adding the numeric indices.
func (im *IfdMapping) ResolvePath(pathPhrase string) (lineage []IfdTagIdAndIndex, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
pathPhrase = strings.TrimSpace(pathPhrase)
if pathPhrase == "" {
log.Panicf("can not resolve empty path-phrase")
}
path := strings.Split(pathPhrase, "/")
lineage = make([]IfdTagIdAndIndex, len(path))
ptr := im.rootNode
empty := IfdTagIdAndIndex{}
for i, name := range path {
indexByte := name[len(name)-1]
index := 0
if indexByte >= '0' && indexByte <= '9' {
index = int(indexByte - '0')
name = name[:len(name)-1]
}
itii := IfdTagIdAndIndex{}
for _, mi := range ptr.Children {
if mi.Name != name {
continue
}
itii.Name = name
itii.TagId = mi.TagId
itii.Index = index
ptr = mi
break
}
if itii == empty {
log.Panicf("ifd child with name [%s] not registered: [%s]", name, pathPhrase)
}
lineage[i] = itii
}
return lineage, nil
}
// FqPathPhraseFromLineage returns the fully-qualified IFD path from the slice.
func (im *IfdMapping) FqPathPhraseFromLineage(lineage []IfdTagIdAndIndex) (fqPathPhrase string) {
fqPathParts := make([]string, len(lineage))
for i, itii := range lineage {
if itii.Index > 0 {
fqPathParts[i] = fmt.Sprintf("%s%d", itii.Name, itii.Index)
} else {
fqPathParts[i] = itii.Name
}
}
return strings.Join(fqPathParts, "/")
}
// PathPhraseFromLineage returns the non-fully-qualified IFD path from the
// slice.
func (im *IfdMapping) PathPhraseFromLineage(lineage []IfdTagIdAndIndex) (pathPhrase string) {
pathParts := make([]string, len(lineage))
for i, itii := range lineage {
pathParts[i] = itii.Name
}
return strings.Join(pathParts, "/")
}
// StripPathPhraseIndices returns a non-fully-qualified path-phrase (no
// indices).
func (im *IfdMapping) StripPathPhraseIndices(pathPhrase string) (strippedPathPhrase string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
lineage, err := im.ResolvePath(pathPhrase)
log.PanicIf(err)
strippedPathPhrase = im.PathPhraseFromLineage(lineage)
return strippedPathPhrase, nil
}
// Add puts the given IFD at the given position of the tree. The position of the
// tree is referred to as the placement and is represented by a set of tag-IDs,
// where the leftmost is the root tag and the tags going to the right are
// progressive descendants.
func (im *IfdMapping) Add(parentPlacement []uint16, tagId uint16, name string) (err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
// TODO(dustin): !! It would be nicer to provide a list of names in the placement rather than tag-IDs.
ptr, err := im.Get(parentPlacement)
log.PanicIf(err)
path := make([]string, len(parentPlacement)+1)
if len(parentPlacement) > 0 {
copy(path, ptr.Path)
}
path[len(path)-1] = name
placement := make([]uint16, len(parentPlacement)+1)
if len(placement) > 0 {
copy(placement, ptr.Placement)
}
placement[len(placement)-1] = tagId
childIfd := &MappedIfd{
ParentTagId: ptr.TagId,
Path: path,
Placement: placement,
Name: name,
TagId: tagId,
Children: make(map[uint16]*MappedIfd),
}
if _, found := ptr.Children[tagId]; found == true {
log.Panicf("child IFD with tag-ID (%04x) already registered under IFD [%s] with tag-ID (%04x)", tagId, ptr.Name, ptr.TagId)
}
ptr.Children[tagId] = childIfd
return nil
}
func (im *IfdMapping) dumpLineages(stack []*MappedIfd, input []string) (output []string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
currentIfd := stack[len(stack)-1]
output = input
for _, childIfd := range currentIfd.Children {
stackCopy := make([]*MappedIfd, len(stack)+1)
copy(stackCopy, stack)
stackCopy[len(stack)] = childIfd
// Add to output, but don't include the obligatory root node.
parts := make([]string, len(stackCopy)-1)
for i, mi := range stackCopy[1:] {
parts[i] = mi.Name
}
output = append(output, strings.Join(parts, "/"))
output, err = im.dumpLineages(stackCopy, output)
log.PanicIf(err)
}
return output, nil
}
// DumpLineages returns a slice of strings representing all mappings.
func (im *IfdMapping) DumpLineages() (output []string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
stack := []*MappedIfd{im.rootNode}
output = make([]string, 0)
output, err = im.dumpLineages(stack, output)
log.PanicIf(err)
return output, nil
}
// LoadStandardIfds loads the standard IFDs into the mapping.
func LoadStandardIfds(im *IfdMapping) (err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
err = im.Add(
[]uint16{},
IfdStandardIfdIdentity.TagId(), IfdStandardIfdIdentity.Name())
log.PanicIf(err)
err = im.Add(
[]uint16{IfdStandardIfdIdentity.TagId()},
IfdExifStandardIfdIdentity.TagId(), IfdExifStandardIfdIdentity.Name())
log.PanicIf(err)
err = im.Add(
[]uint16{IfdStandardIfdIdentity.TagId(), IfdExifStandardIfdIdentity.TagId()},
IfdExifIopStandardIfdIdentity.TagId(), IfdExifIopStandardIfdIdentity.Name())
log.PanicIf(err)
err = im.Add(
[]uint16{IfdStandardIfdIdentity.TagId()},
IfdGpsInfoStandardIfdIdentity.TagId(), IfdGpsInfoStandardIfdIdentity.Name())
log.PanicIf(err)
return nil
}
// IfdTag describes a single IFD tag and its parent (if any).
type IfdTag struct {
parentIfdTag *IfdTag
tagId uint16
name string
}
func NewIfdTag(parentIfdTag *IfdTag, tagId uint16, name string) IfdTag {
return IfdTag{
parentIfdTag: parentIfdTag,
tagId: tagId,
name: name,
}
}
// ParentIfd returns the IfdTag of this IFD's parent.
func (it IfdTag) ParentIfd() *IfdTag {
return it.parentIfdTag
}
// TagId returns the tag-ID of this IFD.
func (it IfdTag) TagId() uint16 {
return it.tagId
}
// Name returns the simple name of this IFD.
func (it IfdTag) Name() string {
return it.name
}
// String returns a descriptive string.
func (it IfdTag) String() string {
parentIfdPhrase := ""
if it.parentIfdTag != nil {
parentIfdPhrase = fmt.Sprintf(" PARENT=(0x%04x)[%s]", it.parentIfdTag.tagId, it.parentIfdTag.name)
}
return fmt.Sprintf("IfdTag<TAG-ID=(0x%04x) NAME=[%s]%s>", it.tagId, it.name, parentIfdPhrase)
}
var (
// rootStandardIfd is the standard root IFD.
rootStandardIfd = NewIfdTag(nil, 0x0000, "IFD") // IFD
// exifStandardIfd is the standard "Exif" IFD.
exifStandardIfd = NewIfdTag(&rootStandardIfd, 0x8769, "Exif") // IFD/Exif
// iopStandardIfd is the standard "Iop" IFD.
iopStandardIfd = NewIfdTag(&exifStandardIfd, 0xA005, "Iop") // IFD/Exif/Iop
// gpsInfoStandardIfd is the standard "GPS" IFD.
gpsInfoStandardIfd = NewIfdTag(&rootStandardIfd, 0x8825, "GPSInfo") // IFD/GPSInfo
)
// IfdIdentityPart represents one component in an IFD path.
type IfdIdentityPart struct {
Name string
Index int
}
// String returns a fully-qualified IFD path.
func (iip IfdIdentityPart) String() string {
if iip.Index > 0 {
return fmt.Sprintf("%s%d", iip.Name, iip.Index)
} else {
return iip.Name
}
}
// UnindexedString returned a non-fully-qualified IFD path.
func (iip IfdIdentityPart) UnindexedString() string {
return iip.Name
}
// IfdIdentity represents a single IFD path and provides access to various
// information and representations.
//
// Only global instances can be used for equality checks.
type IfdIdentity struct {
ifdTag IfdTag
parts []IfdIdentityPart
ifdPath string
fqIfdPath string
}
// NewIfdIdentity returns a new IfdIdentity struct.
func NewIfdIdentity(ifdTag IfdTag, parts ...IfdIdentityPart) (ii *IfdIdentity) {
ii = &IfdIdentity{
ifdTag: ifdTag,
parts: parts,
}
ii.ifdPath = ii.getIfdPath()
ii.fqIfdPath = ii.getFqIfdPath()
return ii
}
// NewIfdIdentityFromString parses a string like "IFD/Exif" or "IFD1" or
// something more exotic with custom IFDs ("SomeIFD4/SomeChildIFD6"). Note that
// this will valid the unindexed IFD structure (because the standard tags from
// the specification are unindexed), but not, obviously, any indices (e.g.
// the numbers in "IFD0", "IFD1", "SomeIFD4/SomeChildIFD6"). It is
// required for the caller to check whether these specific instances
// were actually parsed out of the stream.
func NewIfdIdentityFromString(im *IfdMapping, fqIfdPath string) (ii *IfdIdentity, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
lineage, err := im.ResolvePath(fqIfdPath)
log.PanicIf(err)
var lastIt *IfdTag
identityParts := make([]IfdIdentityPart, len(lineage))
for i, itii := range lineage {
// Build out the tag that will eventually point to the IFD represented
// by the right-most part in the IFD path.
it := &IfdTag{
parentIfdTag: lastIt,
tagId: itii.TagId,
name: itii.Name,
}
lastIt = it
// Create the next IfdIdentity part.
iip := IfdIdentityPart{
Name: itii.Name,
Index: itii.Index,
}
identityParts[i] = iip
}
ii = NewIfdIdentity(*lastIt, identityParts...)
return ii, nil
}
func (ii *IfdIdentity) getFqIfdPath() string {
partPhrases := make([]string, len(ii.parts))
for i, iip := range ii.parts {
partPhrases[i] = iip.String()
}
return strings.Join(partPhrases, "/")
}
func (ii *IfdIdentity) getIfdPath() string {
partPhrases := make([]string, len(ii.parts))
for i, iip := range ii.parts {
partPhrases[i] = iip.UnindexedString()
}
return strings.Join(partPhrases, "/")
}
// String returns a fully-qualified IFD path.
func (ii *IfdIdentity) String() string {
return ii.fqIfdPath
}
// UnindexedString returns a non-fully-qualified IFD path.
func (ii *IfdIdentity) UnindexedString() string {
return ii.ifdPath
}
// IfdTag returns the tag struct behind this IFD.
func (ii *IfdIdentity) IfdTag() IfdTag {
return ii.ifdTag
}
// TagId returns the tag-ID of the IFD.
func (ii *IfdIdentity) TagId() uint16 {
return ii.ifdTag.TagId()
}
// LeafPathPart returns the last right-most path-part, which represents the
// current IFD.
func (ii *IfdIdentity) LeafPathPart() IfdIdentityPart {
return ii.parts[len(ii.parts)-1]
}
// Name returns the simple name of this IFD.
func (ii *IfdIdentity) Name() string {
return ii.LeafPathPart().Name
}
// Index returns the index of this IFD (more then one IFD under a parent IFD
// will be numbered [0..n]).
func (ii *IfdIdentity) Index() int {
return ii.LeafPathPart().Index
}
// Equals returns true if the two IfdIdentity instances are effectively
// identical.
//
// Since there's no way to get a specific fully-qualified IFD path without a
// certain slice of parts and all other fields are also derived from this,
// checking that the fully-qualified IFD path is equals is sufficient.
func (ii *IfdIdentity) Equals(ii2 *IfdIdentity) bool {
return ii.String() == ii2.String()
}
// NewChild creates an IfdIdentity for an IFD that is a child of the current
// IFD.
func (ii *IfdIdentity) NewChild(childIfdTag IfdTag, index int) (iiChild *IfdIdentity) {
if *childIfdTag.parentIfdTag != ii.ifdTag {
log.Panicf("can not add child; we are not the parent:\nUS=%v\nCHILD=%v", ii.ifdTag, childIfdTag)
}
childPart := IfdIdentityPart{childIfdTag.name, index}
childParts := append(ii.parts, childPart)
iiChild = NewIfdIdentity(childIfdTag, childParts...)
return iiChild
}
// NewSibling creates an IfdIdentity for an IFD that is a sibling to the current
// one.
func (ii *IfdIdentity) NewSibling(index int) (iiSibling *IfdIdentity) {
parts := make([]IfdIdentityPart, len(ii.parts))
copy(parts, ii.parts)
parts[len(parts)-1].Index = index
iiSibling = NewIfdIdentity(ii.ifdTag, parts...)
return iiSibling
}
var (
// IfdStandardIfdIdentity represents the IFD path for IFD0.
IfdStandardIfdIdentity = NewIfdIdentity(rootStandardIfd, IfdIdentityPart{"IFD", 0})
// IfdExifStandardIfdIdentity represents the IFD path for IFD0/Exif0.
IfdExifStandardIfdIdentity = IfdStandardIfdIdentity.NewChild(exifStandardIfd, 0)
// IfdExifIopStandardIfdIdentity represents the IFD path for IFD0/Exif0/Iop0.
IfdExifIopStandardIfdIdentity = IfdExifStandardIfdIdentity.NewChild(iopStandardIfd, 0)
// IfdGPSInfoStandardIfdIdentity represents the IFD path for IFD0/GPSInfo0.
IfdGpsInfoStandardIfdIdentity = IfdStandardIfdIdentity.NewChild(gpsInfoStandardIfd, 0)
// Ifd1StandardIfdIdentity represents the IFD path for IFD1.
Ifd1StandardIfdIdentity = NewIfdIdentity(rootStandardIfd, IfdIdentityPart{"IFD", 1})
)
var (
IfdPathStandard = IfdStandardIfdIdentity
IfdPathStandardExif = IfdExifStandardIfdIdentity
IfdPathStandardExifIop = IfdExifIopStandardIfdIdentity
IfdPathStandardGps = IfdGpsInfoStandardIfdIdentity
)