photoprism-client-go/vendor/github.com/dsoprea/go-exif/v2/common/value_context.go

413 lines
11 KiB
Go

package exifcommon
import (
"errors"
"encoding/binary"
log "github.com/dsoprea/go-logging"
)
var (
parser *Parser
)
var (
// ErrNotFarValue indicates that an offset-based lookup was attempted for a
// non-offset-based (embedded) value.
ErrNotFarValue = errors.New("not a far value")
)
// ValueContext embeds all of the parameters required to find and extract the
// actual tag value.
type ValueContext struct {
unitCount uint32
valueOffset uint32
rawValueOffset []byte
addressableData []byte
tagType TagTypePrimitive
byteOrder binary.ByteOrder
// undefinedValueTagType is the effective type to use if this is an
// "undefined" value.
undefinedValueTagType TagTypePrimitive
ifdPath string
tagId uint16
}
// TODO(dustin): We can update newValueContext() to derive `valueOffset` itself (from `rawValueOffset`).
// NewValueContext returns a new ValueContext struct.
func NewValueContext(ifdPath string, tagId uint16, unitCount, valueOffset uint32, rawValueOffset, addressableData []byte, tagType TagTypePrimitive, byteOrder binary.ByteOrder) *ValueContext {
return &ValueContext{
unitCount: unitCount,
valueOffset: valueOffset,
rawValueOffset: rawValueOffset,
addressableData: addressableData,
tagType: tagType,
byteOrder: byteOrder,
ifdPath: ifdPath,
tagId: tagId,
}
}
// SetUndefinedValueType sets the effective type if this is an unknown-type tag.
func (vc *ValueContext) SetUndefinedValueType(tagType TagTypePrimitive) {
if vc.tagType != TypeUndefined {
log.Panicf("can not set effective type for unknown-type tag because this is *not* an unknown-type tag")
}
vc.undefinedValueTagType = tagType
}
// UnitCount returns the embedded unit-count.
func (vc *ValueContext) UnitCount() uint32 {
return vc.unitCount
}
// ValueOffset returns the value-offset decoded as a `uint32`.
func (vc *ValueContext) ValueOffset() uint32 {
return vc.valueOffset
}
// RawValueOffset returns the uninterpreted value-offset. This is used for
// embedded values (values small enough to fit within the offset bytes rather
// than needing to be stored elsewhere and referred to by an actual offset).
func (vc *ValueContext) RawValueOffset() []byte {
return vc.rawValueOffset
}
// AddressableData returns the block of data that we can dereference into.
func (vc *ValueContext) AddressableData() []byte {
return vc.addressableData
}
// ByteOrder returns the byte-order of numbers.
func (vc *ValueContext) ByteOrder() binary.ByteOrder {
return vc.byteOrder
}
// IfdPath returns the path of the IFD containing this tag.
func (vc *ValueContext) IfdPath() string {
return vc.ifdPath
}
// TagId returns the ID of the tag that we represent.
func (vc *ValueContext) TagId() uint16 {
return vc.tagId
}
// isEmbedded returns whether the value is embedded or a reference. This can't
// be precalculated since the size is not defined for all types (namely the
// "undefined" types).
func (vc *ValueContext) isEmbedded() bool {
tagType := vc.effectiveValueType()
return (tagType.Size() * int(vc.unitCount)) <= 4
}
// SizeInBytes returns the number of bytes that this value requires. The
// underlying call will panic if the type is UNDEFINED. It is the
// responsibility of the caller to preemptively check that.
func (vc *ValueContext) SizeInBytes() int {
tagType := vc.effectiveValueType()
return tagType.Size() * int(vc.unitCount)
}
// effectiveValueType returns the effective type of the unknown-type tag or, if
// not unknown, the actual type.
func (vc *ValueContext) effectiveValueType() (tagType TagTypePrimitive) {
if vc.tagType == TypeUndefined {
tagType = vc.undefinedValueTagType
if tagType == 0 {
log.Panicf("undefined-value type not set")
}
} else {
tagType = vc.tagType
}
return tagType
}
// readRawEncoded returns the encoded bytes for the value that we represent.
func (vc *ValueContext) readRawEncoded() (rawBytes []byte, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
tagType := vc.effectiveValueType()
unitSizeRaw := uint32(tagType.Size())
if vc.isEmbedded() == true {
byteLength := unitSizeRaw * vc.unitCount
return vc.rawValueOffset[:byteLength], nil
}
return vc.addressableData[vc.valueOffset : vc.valueOffset+vc.unitCount*unitSizeRaw], nil
}
// GetFarOffset returns the offset if the value is not embedded [within the
// pointer itself] or an error if an embedded value.
func (vc *ValueContext) GetFarOffset() (offset uint32, err error) {
if vc.isEmbedded() == true {
return 0, ErrNotFarValue
}
return vc.valueOffset, nil
}
// ReadRawEncoded returns the encoded bytes for the value that we represent.
func (vc *ValueContext) ReadRawEncoded() (rawBytes []byte, err error) {
// TODO(dustin): Remove this method and rename readRawEncoded in its place.
return vc.readRawEncoded()
}
// Format returns a string representation for the value.
//
// Where the type is not ASCII, `justFirst` indicates whether to just stringify
// the first item in the slice (or return an empty string if the slice is
// empty).
//
// Since this method lacks the information to process undefined-type tags (e.g.
// byte-order, tag-ID, IFD type), it will return an error if attempted. See
// `Undefined()`.
func (vc *ValueContext) Format() (value string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawBytes, err := vc.readRawEncoded()
log.PanicIf(err)
phrase, err := FormatFromBytes(rawBytes, vc.effectiveValueType(), false, vc.byteOrder)
log.PanicIf(err)
return phrase, nil
}
// FormatFirst is similar to `Format` but only gets and stringifies the first
// item.
func (vc *ValueContext) FormatFirst() (value string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawBytes, err := vc.readRawEncoded()
log.PanicIf(err)
phrase, err := FormatFromBytes(rawBytes, vc.tagType, true, vc.byteOrder)
log.PanicIf(err)
return phrase, nil
}
// ReadBytes parses the encoded byte-array from the value-context.
func (vc *ValueContext) ReadBytes() (value []byte, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseBytes(rawValue, vc.unitCount)
log.PanicIf(err)
return value, nil
}
// ReadAscii parses the encoded NUL-terminated ASCII string from the value-
// context.
func (vc *ValueContext) ReadAscii() (value string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseAscii(rawValue, vc.unitCount)
log.PanicIf(err)
return value, nil
}
// ReadAsciiNoNul parses the non-NUL-terminated encoded ASCII string from the
// value-context.
func (vc *ValueContext) ReadAsciiNoNul() (value string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseAsciiNoNul(rawValue, vc.unitCount)
log.PanicIf(err)
return value, nil
}
// ReadShorts parses the list of encoded shorts from the value-context.
func (vc *ValueContext) ReadShorts() (value []uint16, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseShorts(rawValue, vc.unitCount, vc.byteOrder)
log.PanicIf(err)
return value, nil
}
// ReadLongs parses the list of encoded, unsigned longs from the value-context.
func (vc *ValueContext) ReadLongs() (value []uint32, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseLongs(rawValue, vc.unitCount, vc.byteOrder)
log.PanicIf(err)
return value, nil
}
// ReadRationals parses the list of encoded, unsigned rationals from the value-
// context.
func (vc *ValueContext) ReadRationals() (value []Rational, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseRationals(rawValue, vc.unitCount, vc.byteOrder)
log.PanicIf(err)
return value, nil
}
// ReadSignedLongs parses the list of encoded, signed longs from the value-context.
func (vc *ValueContext) ReadSignedLongs() (value []int32, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseSignedLongs(rawValue, vc.unitCount, vc.byteOrder)
log.PanicIf(err)
return value, nil
}
// ReadSignedRationals parses the list of encoded, signed rationals from the
// value-context.
func (vc *ValueContext) ReadSignedRationals() (value []SignedRational, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
rawValue, err := vc.readRawEncoded()
log.PanicIf(err)
value, err = parser.ParseSignedRationals(rawValue, vc.unitCount, vc.byteOrder)
log.PanicIf(err)
return value, nil
}
// Values knows how to resolve the given value. This value is always a list
// (undefined-values aside), so we're named accordingly.
//
// Since this method lacks the information to process unknown-type tags (e.g.
// byte-order, tag-ID, IFD type), it will return an error if attempted. See
// `Undefined()`.
func (vc *ValueContext) Values() (values interface{}, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if vc.tagType == TypeByte {
values, err = vc.ReadBytes()
log.PanicIf(err)
} else if vc.tagType == TypeAscii {
values, err = vc.ReadAscii()
log.PanicIf(err)
} else if vc.tagType == TypeAsciiNoNul {
values, err = vc.ReadAsciiNoNul()
log.PanicIf(err)
} else if vc.tagType == TypeShort {
values, err = vc.ReadShorts()
log.PanicIf(err)
} else if vc.tagType == TypeLong {
values, err = vc.ReadLongs()
log.PanicIf(err)
} else if vc.tagType == TypeRational {
values, err = vc.ReadRationals()
log.PanicIf(err)
} else if vc.tagType == TypeSignedLong {
values, err = vc.ReadSignedLongs()
log.PanicIf(err)
} else if vc.tagType == TypeSignedRational {
values, err = vc.ReadSignedRationals()
log.PanicIf(err)
} else if vc.tagType == TypeUndefined {
log.Panicf("will not parse undefined-type value")
// Never called.
return nil, nil
} else {
log.Panicf("value of type [%s] is unparseable", vc.tagType)
// Never called.
return nil, nil
}
return values, nil
}
func init() {
parser = new(Parser)
}