photoprism-client-go/vendor/github.com/golang/geo/s1/interval.go

463 lines
14 KiB
Go
Raw Normal View History

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s1
import (
"math"
"strconv"
)
// An Interval represents a closed interval on a unit circle (also known
// as a 1-dimensional sphere). It is capable of representing the empty
// interval (containing no points), the full interval (containing all
// points), and zero-length intervals (containing a single point).
//
// Points are represented by the angle they make with the positive x-axis in
// the range [-π, π]. An interval is represented by its lower and upper
// bounds (both inclusive, since the interval is closed). The lower bound may
// be greater than the upper bound, in which case the interval is "inverted"
// (i.e. it passes through the point (-1, 0)).
//
// The point (-1, 0) has two valid representations, π and -π. The
// normalized representation of this point is π, so that endpoints
// of normal intervals are in the range (-π, π]. We normalize the latter to
// the former in IntervalFromEndpoints. However, we take advantage of the point
// -π to construct two special intervals:
// The full interval is [-π, π]
// The empty interval is [π, -π].
//
// Treat the exported fields as read-only.
type Interval struct {
Lo, Hi float64
}
// IntervalFromEndpoints constructs a new interval from endpoints.
// Both arguments must be in the range [-π,π]. This function allows inverted intervals
// to be created.
func IntervalFromEndpoints(lo, hi float64) Interval {
i := Interval{lo, hi}
if lo == -math.Pi && hi != math.Pi {
i.Lo = math.Pi
}
if hi == -math.Pi && lo != math.Pi {
i.Hi = math.Pi
}
return i
}
// IntervalFromPointPair returns the minimal interval containing the two given points.
// Both arguments must be in [-π,π].
func IntervalFromPointPair(a, b float64) Interval {
if a == -math.Pi {
a = math.Pi
}
if b == -math.Pi {
b = math.Pi
}
if positiveDistance(a, b) <= math.Pi {
return Interval{a, b}
}
return Interval{b, a}
}
// EmptyInterval returns an empty interval.
func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} }
// FullInterval returns a full interval.
func FullInterval() Interval { return Interval{-math.Pi, math.Pi} }
// IsValid reports whether the interval is valid.
func (i Interval) IsValid() bool {
return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi &&
!(i.Lo == -math.Pi && i.Hi != math.Pi) &&
!(i.Hi == -math.Pi && i.Lo != math.Pi))
}
// IsFull reports whether the interval is full.
func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi }
// IsEmpty reports whether the interval is empty.
func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi }
// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi.
func (i Interval) IsInverted() bool { return i.Lo > i.Hi }
// Invert returns the interval with endpoints swapped.
func (i Interval) Invert() Interval {
return Interval{i.Hi, i.Lo}
}
// Center returns the midpoint of the interval.
// It is undefined for full and empty intervals.
func (i Interval) Center() float64 {
c := 0.5 * (i.Lo + i.Hi)
if !i.IsInverted() {
return c
}
if c <= 0 {
return c + math.Pi
}
return c - math.Pi
}
// Length returns the length of the interval.
// The length of an empty interval is negative.
func (i Interval) Length() float64 {
l := i.Hi - i.Lo
if l >= 0 {
return l
}
l += 2 * math.Pi
if l > 0 {
return l
}
return -1
}
// Assumes p ∈ (-π,π].
func (i Interval) fastContains(p float64) bool {
if i.IsInverted() {
return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty()
}
return p >= i.Lo && p <= i.Hi
}
// Contains returns true iff the interval contains p.
// Assumes p ∈ [-π,π].
func (i Interval) Contains(p float64) bool {
if p == -math.Pi {
p = math.Pi
}
return i.fastContains(p)
}
// ContainsInterval returns true iff the interval contains oi.
func (i Interval) ContainsInterval(oi Interval) bool {
if i.IsInverted() {
if oi.IsInverted() {
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
}
return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty()
}
if oi.IsInverted() {
return i.IsFull() || oi.IsEmpty()
}
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
}
// InteriorContains returns true iff the interior of the interval contains p.
// Assumes p ∈ [-π,π].
func (i Interval) InteriorContains(p float64) bool {
if p == -math.Pi {
p = math.Pi
}
if i.IsInverted() {
return p > i.Lo || p < i.Hi
}
return (p > i.Lo && p < i.Hi) || i.IsFull()
}
// InteriorContainsInterval returns true iff the interior of the interval contains oi.
func (i Interval) InteriorContainsInterval(oi Interval) bool {
if i.IsInverted() {
if oi.IsInverted() {
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty()
}
return oi.Lo > i.Lo || oi.Hi < i.Hi
}
if oi.IsInverted() {
return i.IsFull() || oi.IsEmpty()
}
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull()
}
// Intersects returns true iff the interval contains any points in common with oi.
func (i Interval) Intersects(oi Interval) bool {
if i.IsEmpty() || oi.IsEmpty() {
return false
}
if i.IsInverted() {
return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo
}
if oi.IsInverted() {
return oi.Lo <= i.Hi || oi.Hi >= i.Lo
}
return oi.Lo <= i.Hi && oi.Hi >= i.Lo
}
// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary.
func (i Interval) InteriorIntersects(oi Interval) bool {
if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi {
return false
}
if i.IsInverted() {
return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo
}
if oi.IsInverted() {
return oi.Lo < i.Hi || oi.Hi > i.Lo
}
return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull()
}
// Compute distance from a to b in [0,2π], in a numerically stable way.
func positiveDistance(a, b float64) float64 {
d := b - a
if d >= 0 {
return d
}
return (b + math.Pi) - (a - math.Pi)
}
// Union returns the smallest interval that contains both the interval and oi.
func (i Interval) Union(oi Interval) Interval {
if oi.IsEmpty() {
return i
}
if i.fastContains(oi.Lo) {
if i.fastContains(oi.Hi) {
// Either oi ⊂ i, or i oi is the full interval.
if i.ContainsInterval(oi) {
return i
}
return FullInterval()
}
return Interval{i.Lo, oi.Hi}
}
if i.fastContains(oi.Hi) {
return Interval{oi.Lo, i.Hi}
}
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
if i.IsEmpty() || oi.fastContains(i.Lo) {
return oi
}
// This is the only hard case where we need to find the closest pair of endpoints.
if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) {
return Interval{oi.Lo, i.Hi}
}
return Interval{i.Lo, oi.Hi}
}
// Intersection returns the smallest interval that contains the intersection of the interval and oi.
func (i Interval) Intersection(oi Interval) Interval {
if oi.IsEmpty() {
return EmptyInterval()
}
if i.fastContains(oi.Lo) {
if i.fastContains(oi.Hi) {
// Either oi ⊂ i, or i and oi intersect twice. Neither are empty.
// In the first case we want to return i (which is shorter than oi).
// In the second case one of them is inverted, and the smallest interval
// that covers the two disjoint pieces is the shorter of i and oi.
// We thus want to pick the shorter of i and oi in both cases.
if oi.Length() < i.Length() {
return oi
}
return i
}
return Interval{oi.Lo, i.Hi}
}
if i.fastContains(oi.Hi) {
return Interval{i.Lo, oi.Hi}
}
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
if oi.fastContains(i.Lo) {
return i
}
return EmptyInterval()
}
// AddPoint returns the interval expanded by the minimum amount necessary such
// that it contains the given point "p" (an angle in the range [-π, π]).
func (i Interval) AddPoint(p float64) Interval {
if math.Abs(p) > math.Pi {
return i
}
if p == -math.Pi {
p = math.Pi
}
if i.fastContains(p) {
return i
}
if i.IsEmpty() {
return Interval{p, p}
}
if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) {
return Interval{p, i.Hi}
}
return Interval{i.Lo, p}
}
// Define the maximum rounding error for arithmetic operations. Depending on the
// platform the mantissa precision may be different than others, so we choose to
// use specific values to be consistent across all.
// The values come from the C++ implementation.
var (
// epsilon is a small number that represents a reasonable level of noise between two
// values that can be considered to be equal.
epsilon = 1e-15
// dblEpsilon is a smaller number for values that require more precision.
dblEpsilon = 2.220446049e-16
)
// Expanded returns an interval that has been expanded on each side by margin.
// If margin is negative, then the function shrinks the interval on
// each side by margin instead. The resulting interval may be empty or
// full. Any expansion (positive or negative) of a full interval remains
// full, and any expansion of an empty interval remains empty.
func (i Interval) Expanded(margin float64) Interval {
if margin >= 0 {
if i.IsEmpty() {
return i
}
// Check whether this interval will be full after expansion, allowing
// for a rounding error when computing each endpoint.
if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi {
return FullInterval()
}
} else {
if i.IsFull() {
return i
}
// Check whether this interval will be empty after expansion, allowing
// for a rounding error when computing each endpoint.
if i.Length()+2*margin-2*dblEpsilon <= 0 {
return EmptyInterval()
}
}
result := IntervalFromEndpoints(
math.Remainder(i.Lo-margin, 2*math.Pi),
math.Remainder(i.Hi+margin, 2*math.Pi),
)
if result.Lo <= -math.Pi {
result.Lo = math.Pi
}
return result
}
// ApproxEqual reports whether this interval can be transformed into the given
// interval by moving each endpoint by at most ε, without the
// endpoints crossing (which would invert the interval). Empty and full
// intervals are considered to start at an arbitrary point on the unit circle,
// so any interval with (length <= 2*ε) matches the empty interval, and
// any interval with (length >= 2*π - 2*ε) matches the full interval.
func (i Interval) ApproxEqual(other Interval) bool {
// Full and empty intervals require special cases because the endpoints
// are considered to be positioned arbitrarily.
if i.IsEmpty() {
return other.Length() <= 2*epsilon
}
if other.IsEmpty() {
return i.Length() <= 2*epsilon
}
if i.IsFull() {
return other.Length() >= 2*(math.Pi-epsilon)
}
if other.IsFull() {
return i.Length() >= 2*(math.Pi-epsilon)
}
// The purpose of the last test below is to verify that moving the endpoints
// does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20].
return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon &&
math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon &&
math.Abs(i.Length()-other.Length()) <= 2*epsilon)
}
func (i Interval) String() string {
// like "[%.7f, %.7f]"
return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]"
}
// Complement returns the complement of the interior of the interval. An interval and
// its complement have the same boundary but do not share any interior
// values. The complement operator is not a bijection, since the complement
// of a singleton interval (containing a single value) is the same as the
// complement of an empty interval.
func (i Interval) Complement() Interval {
if i.Lo == i.Hi {
// Singleton. The interval just contains a single point.
return FullInterval()
}
// Handles empty and full.
return Interval{i.Hi, i.Lo}
}
// ComplementCenter returns the midpoint of the complement of the interval. For full and empty
// intervals, the result is arbitrary. For a singleton interval (containing a
// single point), the result is its antipodal point on S1.
func (i Interval) ComplementCenter() float64 {
if i.Lo != i.Hi {
return i.Complement().Center()
}
// Singleton. The interval just contains a single point.
if i.Hi <= 0 {
return i.Hi + math.Pi
}
return i.Hi - math.Pi
}
// DirectedHausdorffDistance returns the Hausdorff distance to the given interval.
// For two intervals i and y, this distance is defined by
// h(i, y) = max_{p in i} min_{q in y} d(p, q),
// where d(.,.) is measured along S1.
func (i Interval) DirectedHausdorffDistance(y Interval) Angle {
if y.ContainsInterval(i) {
return 0 // This includes the case i is empty.
}
if y.IsEmpty() {
return Angle(math.Pi) // maximum possible distance on s1.
}
yComplementCenter := y.ComplementCenter()
if i.Contains(yComplementCenter) {
return Angle(positiveDistance(y.Hi, yComplementCenter))
}
// The Hausdorff distance is realized by either two i.Hi endpoints or two
// i.Lo endpoints, whichever is farther apart.
hiHi := 0.0
if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) {
hiHi = positiveDistance(y.Hi, i.Hi)
}
loLo := 0.0
if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) {
loLo = positiveDistance(i.Lo, y.Lo)
}
return Angle(math.Max(hiHi, loLo))
}
// Project returns the closest point in the interval to the given point p.
// The interval must be non-empty.
func (i Interval) Project(p float64) float64 {
if p == -math.Pi {
p = math.Pi
}
if i.fastContains(p) {
return p
}
// Compute distance from p to each endpoint.
dlo := positiveDistance(p, i.Lo)
dhi := positiveDistance(i.Hi, p)
if dlo < dhi {
return i.Lo
}
return i.Hi
}