photoprism-client-go/vendor/github.com/golang/geo/s1/interval.go

463 lines
14 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s1
import (
"math"
"strconv"
)
// An Interval represents a closed interval on a unit circle (also known
// as a 1-dimensional sphere). It is capable of representing the empty
// interval (containing no points), the full interval (containing all
// points), and zero-length intervals (containing a single point).
//
// Points are represented by the angle they make with the positive x-axis in
// the range [-π, π]. An interval is represented by its lower and upper
// bounds (both inclusive, since the interval is closed). The lower bound may
// be greater than the upper bound, in which case the interval is "inverted"
// (i.e. it passes through the point (-1, 0)).
//
// The point (-1, 0) has two valid representations, π and -π. The
// normalized representation of this point is π, so that endpoints
// of normal intervals are in the range (-π, π]. We normalize the latter to
// the former in IntervalFromEndpoints. However, we take advantage of the point
// -π to construct two special intervals:
// The full interval is [-π, π]
// The empty interval is [π, -π].
//
// Treat the exported fields as read-only.
type Interval struct {
Lo, Hi float64
}
// IntervalFromEndpoints constructs a new interval from endpoints.
// Both arguments must be in the range [-π,π]. This function allows inverted intervals
// to be created.
func IntervalFromEndpoints(lo, hi float64) Interval {
i := Interval{lo, hi}
if lo == -math.Pi && hi != math.Pi {
i.Lo = math.Pi
}
if hi == -math.Pi && lo != math.Pi {
i.Hi = math.Pi
}
return i
}
// IntervalFromPointPair returns the minimal interval containing the two given points.
// Both arguments must be in [-π,π].
func IntervalFromPointPair(a, b float64) Interval {
if a == -math.Pi {
a = math.Pi
}
if b == -math.Pi {
b = math.Pi
}
if positiveDistance(a, b) <= math.Pi {
return Interval{a, b}
}
return Interval{b, a}
}
// EmptyInterval returns an empty interval.
func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} }
// FullInterval returns a full interval.
func FullInterval() Interval { return Interval{-math.Pi, math.Pi} }
// IsValid reports whether the interval is valid.
func (i Interval) IsValid() bool {
return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi &&
!(i.Lo == -math.Pi && i.Hi != math.Pi) &&
!(i.Hi == -math.Pi && i.Lo != math.Pi))
}
// IsFull reports whether the interval is full.
func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi }
// IsEmpty reports whether the interval is empty.
func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi }
// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi.
func (i Interval) IsInverted() bool { return i.Lo > i.Hi }
// Invert returns the interval with endpoints swapped.
func (i Interval) Invert() Interval {
return Interval{i.Hi, i.Lo}
}
// Center returns the midpoint of the interval.
// It is undefined for full and empty intervals.
func (i Interval) Center() float64 {
c := 0.5 * (i.Lo + i.Hi)
if !i.IsInverted() {
return c
}
if c <= 0 {
return c + math.Pi
}
return c - math.Pi
}
// Length returns the length of the interval.
// The length of an empty interval is negative.
func (i Interval) Length() float64 {
l := i.Hi - i.Lo
if l >= 0 {
return l
}
l += 2 * math.Pi
if l > 0 {
return l
}
return -1
}
// Assumes p ∈ (-π,π].
func (i Interval) fastContains(p float64) bool {
if i.IsInverted() {
return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty()
}
return p >= i.Lo && p <= i.Hi
}
// Contains returns true iff the interval contains p.
// Assumes p ∈ [-π,π].
func (i Interval) Contains(p float64) bool {
if p == -math.Pi {
p = math.Pi
}
return i.fastContains(p)
}
// ContainsInterval returns true iff the interval contains oi.
func (i Interval) ContainsInterval(oi Interval) bool {
if i.IsInverted() {
if oi.IsInverted() {
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
}
return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty()
}
if oi.IsInverted() {
return i.IsFull() || oi.IsEmpty()
}
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
}
// InteriorContains returns true iff the interior of the interval contains p.
// Assumes p ∈ [-π,π].
func (i Interval) InteriorContains(p float64) bool {
if p == -math.Pi {
p = math.Pi
}
if i.IsInverted() {
return p > i.Lo || p < i.Hi
}
return (p > i.Lo && p < i.Hi) || i.IsFull()
}
// InteriorContainsInterval returns true iff the interior of the interval contains oi.
func (i Interval) InteriorContainsInterval(oi Interval) bool {
if i.IsInverted() {
if oi.IsInverted() {
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty()
}
return oi.Lo > i.Lo || oi.Hi < i.Hi
}
if oi.IsInverted() {
return i.IsFull() || oi.IsEmpty()
}
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull()
}
// Intersects returns true iff the interval contains any points in common with oi.
func (i Interval) Intersects(oi Interval) bool {
if i.IsEmpty() || oi.IsEmpty() {
return false
}
if i.IsInverted() {
return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo
}
if oi.IsInverted() {
return oi.Lo <= i.Hi || oi.Hi >= i.Lo
}
return oi.Lo <= i.Hi && oi.Hi >= i.Lo
}
// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary.
func (i Interval) InteriorIntersects(oi Interval) bool {
if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi {
return false
}
if i.IsInverted() {
return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo
}
if oi.IsInverted() {
return oi.Lo < i.Hi || oi.Hi > i.Lo
}
return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull()
}
// Compute distance from a to b in [0,2π], in a numerically stable way.
func positiveDistance(a, b float64) float64 {
d := b - a
if d >= 0 {
return d
}
return (b + math.Pi) - (a - math.Pi)
}
// Union returns the smallest interval that contains both the interval and oi.
func (i Interval) Union(oi Interval) Interval {
if oi.IsEmpty() {
return i
}
if i.fastContains(oi.Lo) {
if i.fastContains(oi.Hi) {
// Either oi ⊂ i, or i oi is the full interval.
if i.ContainsInterval(oi) {
return i
}
return FullInterval()
}
return Interval{i.Lo, oi.Hi}
}
if i.fastContains(oi.Hi) {
return Interval{oi.Lo, i.Hi}
}
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
if i.IsEmpty() || oi.fastContains(i.Lo) {
return oi
}
// This is the only hard case where we need to find the closest pair of endpoints.
if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) {
return Interval{oi.Lo, i.Hi}
}
return Interval{i.Lo, oi.Hi}
}
// Intersection returns the smallest interval that contains the intersection of the interval and oi.
func (i Interval) Intersection(oi Interval) Interval {
if oi.IsEmpty() {
return EmptyInterval()
}
if i.fastContains(oi.Lo) {
if i.fastContains(oi.Hi) {
// Either oi ⊂ i, or i and oi intersect twice. Neither are empty.
// In the first case we want to return i (which is shorter than oi).
// In the second case one of them is inverted, and the smallest interval
// that covers the two disjoint pieces is the shorter of i and oi.
// We thus want to pick the shorter of i and oi in both cases.
if oi.Length() < i.Length() {
return oi
}
return i
}
return Interval{oi.Lo, i.Hi}
}
if i.fastContains(oi.Hi) {
return Interval{i.Lo, oi.Hi}
}
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
if oi.fastContains(i.Lo) {
return i
}
return EmptyInterval()
}
// AddPoint returns the interval expanded by the minimum amount necessary such
// that it contains the given point "p" (an angle in the range [-π, π]).
func (i Interval) AddPoint(p float64) Interval {
if math.Abs(p) > math.Pi {
return i
}
if p == -math.Pi {
p = math.Pi
}
if i.fastContains(p) {
return i
}
if i.IsEmpty() {
return Interval{p, p}
}
if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) {
return Interval{p, i.Hi}
}
return Interval{i.Lo, p}
}
// Define the maximum rounding error for arithmetic operations. Depending on the
// platform the mantissa precision may be different than others, so we choose to
// use specific values to be consistent across all.
// The values come from the C++ implementation.
var (
// epsilon is a small number that represents a reasonable level of noise between two
// values that can be considered to be equal.
epsilon = 1e-15
// dblEpsilon is a smaller number for values that require more precision.
dblEpsilon = 2.220446049e-16
)
// Expanded returns an interval that has been expanded on each side by margin.
// If margin is negative, then the function shrinks the interval on
// each side by margin instead. The resulting interval may be empty or
// full. Any expansion (positive or negative) of a full interval remains
// full, and any expansion of an empty interval remains empty.
func (i Interval) Expanded(margin float64) Interval {
if margin >= 0 {
if i.IsEmpty() {
return i
}
// Check whether this interval will be full after expansion, allowing
// for a rounding error when computing each endpoint.
if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi {
return FullInterval()
}
} else {
if i.IsFull() {
return i
}
// Check whether this interval will be empty after expansion, allowing
// for a rounding error when computing each endpoint.
if i.Length()+2*margin-2*dblEpsilon <= 0 {
return EmptyInterval()
}
}
result := IntervalFromEndpoints(
math.Remainder(i.Lo-margin, 2*math.Pi),
math.Remainder(i.Hi+margin, 2*math.Pi),
)
if result.Lo <= -math.Pi {
result.Lo = math.Pi
}
return result
}
// ApproxEqual reports whether this interval can be transformed into the given
// interval by moving each endpoint by at most ε, without the
// endpoints crossing (which would invert the interval). Empty and full
// intervals are considered to start at an arbitrary point on the unit circle,
// so any interval with (length <= 2*ε) matches the empty interval, and
// any interval with (length >= 2*π - 2*ε) matches the full interval.
func (i Interval) ApproxEqual(other Interval) bool {
// Full and empty intervals require special cases because the endpoints
// are considered to be positioned arbitrarily.
if i.IsEmpty() {
return other.Length() <= 2*epsilon
}
if other.IsEmpty() {
return i.Length() <= 2*epsilon
}
if i.IsFull() {
return other.Length() >= 2*(math.Pi-epsilon)
}
if other.IsFull() {
return i.Length() >= 2*(math.Pi-epsilon)
}
// The purpose of the last test below is to verify that moving the endpoints
// does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20].
return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon &&
math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon &&
math.Abs(i.Length()-other.Length()) <= 2*epsilon)
}
func (i Interval) String() string {
// like "[%.7f, %.7f]"
return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]"
}
// Complement returns the complement of the interior of the interval. An interval and
// its complement have the same boundary but do not share any interior
// values. The complement operator is not a bijection, since the complement
// of a singleton interval (containing a single value) is the same as the
// complement of an empty interval.
func (i Interval) Complement() Interval {
if i.Lo == i.Hi {
// Singleton. The interval just contains a single point.
return FullInterval()
}
// Handles empty and full.
return Interval{i.Hi, i.Lo}
}
// ComplementCenter returns the midpoint of the complement of the interval. For full and empty
// intervals, the result is arbitrary. For a singleton interval (containing a
// single point), the result is its antipodal point on S1.
func (i Interval) ComplementCenter() float64 {
if i.Lo != i.Hi {
return i.Complement().Center()
}
// Singleton. The interval just contains a single point.
if i.Hi <= 0 {
return i.Hi + math.Pi
}
return i.Hi - math.Pi
}
// DirectedHausdorffDistance returns the Hausdorff distance to the given interval.
// For two intervals i and y, this distance is defined by
// h(i, y) = max_{p in i} min_{q in y} d(p, q),
// where d(.,.) is measured along S1.
func (i Interval) DirectedHausdorffDistance(y Interval) Angle {
if y.ContainsInterval(i) {
return 0 // This includes the case i is empty.
}
if y.IsEmpty() {
return Angle(math.Pi) // maximum possible distance on s1.
}
yComplementCenter := y.ComplementCenter()
if i.Contains(yComplementCenter) {
return Angle(positiveDistance(y.Hi, yComplementCenter))
}
// The Hausdorff distance is realized by either two i.Hi endpoints or two
// i.Lo endpoints, whichever is farther apart.
hiHi := 0.0
if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) {
hiHi = positiveDistance(y.Hi, i.Hi)
}
loLo := 0.0
if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) {
loLo = positiveDistance(i.Lo, y.Lo)
}
return Angle(math.Max(hiHi, loLo))
}
// Project returns the closest point in the interval to the given point p.
// The interval must be non-empty.
func (i Interval) Project(p float64) float64 {
if p == -math.Pi {
p = math.Pi
}
if i.fastContains(p) {
return p
}
// Compute distance from p to each endpoint.
dlo := positiveDistance(p, i.Lo)
dhi := positiveDistance(i.Hi, p)
if dlo < dhi {
return i.Lo
}
return i.Hi
}